Whakaoti mō P
P=34n-16
Whakaoti mō n
n=\frac{P+16}{34}
Tohaina
Kua tāruatia ki te papatopenga
P=0\times 2n^{2}+34n-16
Whakareatia te 0 ki te 0, ka 0.
P=0n^{2}+34n-16
Whakareatia te 0 ki te 2, ka 0.
P=0+34n-16
Ko te tau i whakarea ki te kore ka hua ko te kore.
P=-16+34n
Tangohia te 16 i te 0, ka -16.
P=0\times 2n^{2}+34n-16
Whakareatia te 0 ki te 0, ka 0.
P=0n^{2}+34n-16
Whakareatia te 0 ki te 2, ka 0.
P=0+34n-16
Ko te tau i whakarea ki te kore ka hua ko te kore.
P=-16+34n
Tangohia te 16 i te 0, ka -16.
-16+34n=P
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
34n=P+16
Me tāpiri te 16 ki ngā taha e rua.
\frac{34n}{34}=\frac{P+16}{34}
Whakawehea ngā taha e rua ki te 34.
n=\frac{P+16}{34}
Mā te whakawehe ki te 34 ka wetekia te whakareanga ki te 34.
n=\frac{P}{34}+\frac{8}{17}
Whakawehe P+16 ki te 34.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}