Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki O
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

O\times 17+3\sqrt{\frac{1-0}{15}}
Whakareatia te 0 ki te 17, ka 0.
O\times 17+3\sqrt{\frac{1}{15}}
Tangohia te 0 i te 1, ka 1.
O\times 17+3\times \frac{\sqrt{1}}{\sqrt{15}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{15}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{15}}.
O\times 17+3\times \frac{1}{\sqrt{15}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
O\times 17+3\times \frac{\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
O\times 17+3\times \frac{\sqrt{15}}{15}
Ko te pūrua o \sqrt{15} ko 15.
O\times 17+\frac{\sqrt{15}}{5}
Whakakorea atu te tauwehe pūnoa nui rawa 15 i roto i te 3 me te 15.
\frac{5O\times 17}{5}+\frac{\sqrt{15}}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia O\times 17 ki te \frac{5}{5}.
\frac{5O\times 17+\sqrt{15}}{5}
Tā te mea he rite te tauraro o \frac{5O\times 17}{5} me \frac{\sqrt{15}}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{85O+\sqrt{15}}{5}
Mahia ngā whakarea i roto o 5O\times 17+\sqrt{15}.