Aromātai
17O+\frac{\sqrt{15}}{5}
Kimi Pārōnaki e ai ki O
17
Tohaina
Kua tāruatia ki te papatopenga
O\times 17+3\sqrt{\frac{1-0}{15}}
Whakareatia te 0 ki te 17, ka 0.
O\times 17+3\sqrt{\frac{1}{15}}
Tangohia te 0 i te 1, ka 1.
O\times 17+3\times \frac{\sqrt{1}}{\sqrt{15}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{15}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{15}}.
O\times 17+3\times \frac{1}{\sqrt{15}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
O\times 17+3\times \frac{\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
O\times 17+3\times \frac{\sqrt{15}}{15}
Ko te pūrua o \sqrt{15} ko 15.
O\times 17+\frac{\sqrt{15}}{5}
Whakakorea atu te tauwehe pūnoa nui rawa 15 i roto i te 3 me te 15.
\frac{5O\times 17}{5}+\frac{\sqrt{15}}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia O\times 17 ki te \frac{5}{5}.
\frac{5O\times 17+\sqrt{15}}{5}
Tā te mea he rite te tauraro o \frac{5O\times 17}{5} me \frac{\sqrt{15}}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{85O+\sqrt{15}}{5}
Mahia ngā whakarea i roto o 5O\times 17+\sqrt{15}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}