Aromātai
20O-4
Whakaroha
20O-4
Tohaina
Kua tāruatia ki te papatopenga
O\times \frac{\left(\frac{\left(2^{9}\right)^{2}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 4 kia riro ai te 9.
O\times \frac{\left(\frac{2^{18}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 9 me te 2 kia riro ai te 18.
O\times \frac{\left(\frac{2^{18}}{2^{15}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te 3 kia riro ai te 15.
O\times \frac{\left(2^{3}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 15 i te 18 kia riro ai te 3.
O\times \frac{2^{6}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
O\times \frac{2^{6}\times 5^{1}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 11 i te 12 kia riro ai te 1.
O\times 2^{2}\times 5^{1}-\left(5\times 2^{2}-4^{2}\right)
Me whakakore tahi te 2^{4} i te taurunga me te tauraro.
O\times 2^{2}\times 5-\left(5\times 2^{2}-4^{2}\right)
Tātaihia te 5 mā te pū o 1, kia riro ko 5.
O\times 2^{2}\times 5-\left(5\times 4-4^{2}\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
O\times 2^{2}\times 5-\left(20-4^{2}\right)
Whakareatia te 5 ki te 4, ka 20.
O\times 2^{2}\times 5-\left(20-16\right)
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
O\times 2^{2}\times 5-4
Tangohia te 16 i te 20, ka 4.
O\times 4\times 5-4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
O\times 20-4
Whakareatia te 4 ki te 5, ka 20.
O\times \frac{\left(\frac{\left(2^{9}\right)^{2}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 4 kia riro ai te 9.
O\times \frac{\left(\frac{2^{18}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 9 me te 2 kia riro ai te 18.
O\times \frac{\left(\frac{2^{18}}{2^{15}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te 3 kia riro ai te 15.
O\times \frac{\left(2^{3}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 15 i te 18 kia riro ai te 3.
O\times \frac{2^{6}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
O\times \frac{2^{6}\times 5^{1}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 11 i te 12 kia riro ai te 1.
O\times 2^{2}\times 5^{1}-\left(5\times 2^{2}-4^{2}\right)
Me whakakore tahi te 2^{4} i te taurunga me te tauraro.
O\times 2^{2}\times 5-\left(5\times 2^{2}-4^{2}\right)
Tātaihia te 5 mā te pū o 1, kia riro ko 5.
O\times 2^{2}\times 5-\left(5\times 4-4^{2}\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
O\times 2^{2}\times 5-\left(20-4^{2}\right)
Whakareatia te 5 ki te 4, ka 20.
O\times 2^{2}\times 5-\left(20-16\right)
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
O\times 2^{2}\times 5-4
Tangohia te 16 i te 20, ka 4.
O\times 4\times 5-4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
O\times 20-4
Whakareatia te 4 ki te 5, ka 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}