Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

O\times \frac{\left(\frac{\left(2^{9}\right)^{2}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 4 kia riro ai te 9.
O\times \frac{\left(\frac{2^{18}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 9 me te 2 kia riro ai te 18.
O\times \frac{\left(\frac{2^{18}}{2^{15}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te 3 kia riro ai te 15.
O\times \frac{\left(2^{3}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 15 i te 18 kia riro ai te 3.
O\times \frac{2^{6}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
O\times \frac{2^{6}\times 5^{1}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 11 i te 12 kia riro ai te 1.
O\times 2^{2}\times 5^{1}-\left(5\times 2^{2}-4^{2}\right)
Me whakakore tahi te 2^{4} i te taurunga me te tauraro.
O\times 2^{2}\times 5-\left(5\times 2^{2}-4^{2}\right)
Tātaihia te 5 mā te pū o 1, kia riro ko 5.
O\times 2^{2}\times 5-\left(5\times 4-4^{2}\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
O\times 2^{2}\times 5-\left(20-4^{2}\right)
Whakareatia te 5 ki te 4, ka 20.
O\times 2^{2}\times 5-\left(20-16\right)
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
O\times 2^{2}\times 5-4
Tangohia te 16 i te 20, ka 4.
O\times 4\times 5-4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
O\times 20-4
Whakareatia te 4 ki te 5, ka 20.
O\times \frac{\left(\frac{\left(2^{9}\right)^{2}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 4 kia riro ai te 9.
O\times \frac{\left(\frac{2^{18}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 9 me te 2 kia riro ai te 18.
O\times \frac{\left(\frac{2^{18}}{2^{15}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te 3 kia riro ai te 15.
O\times \frac{\left(2^{3}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 15 i te 18 kia riro ai te 3.
O\times \frac{2^{6}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
O\times \frac{2^{6}\times 5^{1}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 11 i te 12 kia riro ai te 1.
O\times 2^{2}\times 5^{1}-\left(5\times 2^{2}-4^{2}\right)
Me whakakore tahi te 2^{4} i te taurunga me te tauraro.
O\times 2^{2}\times 5-\left(5\times 2^{2}-4^{2}\right)
Tātaihia te 5 mā te pū o 1, kia riro ko 5.
O\times 2^{2}\times 5-\left(5\times 4-4^{2}\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
O\times 2^{2}\times 5-\left(20-4^{2}\right)
Whakareatia te 5 ki te 4, ka 20.
O\times 2^{2}\times 5-\left(20-16\right)
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
O\times 2^{2}\times 5-4
Tangohia te 16 i te 20, ka 4.
O\times 4\times 5-4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
O\times 20-4
Whakareatia te 4 ki te 5, ka 20.