Whakaoti mō α
\alpha =\frac{360}{N+1}
N\neq -1
Whakaoti mō N
N=-1+\frac{360}{\alpha }
\alpha \neq 0
Tohaina
Kua tāruatia ki te papatopenga
N\alpha =360+\alpha \left(-1\right)
Tē taea kia ōrite te tāupe \alpha ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \alpha .
N\alpha -\alpha \left(-1\right)=360
Tangohia te \alpha \left(-1\right) mai i ngā taha e rua.
N\alpha +\alpha =360
Whakareatia te -1 ki te -1, ka 1.
\left(N+1\right)\alpha =360
Pahekotia ngā kīanga tau katoa e whai ana i te \alpha .
\frac{\left(N+1\right)\alpha }{N+1}=\frac{360}{N+1}
Whakawehea ngā taha e rua ki te N+1.
\alpha =\frac{360}{N+1}
Mā te whakawehe ki te N+1 ka wetekia te whakareanga ki te N+1.
\alpha =\frac{360}{N+1}\text{, }\alpha \neq 0
Tē taea kia ōrite te tāupe \alpha ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}