Tauwehe
-25\left(x-20\right)\left(x+16\right)
Aromātai
-25\left(x-20\right)\left(x+16\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
25\left(-x^{2}+4x+320\right)
Tauwehea te 25.
a+b=4 ab=-320=-320
Whakaarohia te -x^{2}+4x+320. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx+320. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,320 -2,160 -4,80 -5,64 -8,40 -10,32 -16,20
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -320.
-1+320=319 -2+160=158 -4+80=76 -5+64=59 -8+40=32 -10+32=22 -16+20=4
Tātaihia te tapeke mō ia takirua.
a=20 b=-16
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(-x^{2}+20x\right)+\left(-16x+320\right)
Tuhia anō te -x^{2}+4x+320 hei \left(-x^{2}+20x\right)+\left(-16x+320\right).
-x\left(x-20\right)-16\left(x-20\right)
Tauwehea te -x i te tuatahi me te -16 i te rōpū tuarua.
\left(x-20\right)\left(-x-16\right)
Whakatauwehea atu te kīanga pātahi x-20 mā te whakamahi i te āhuatanga tātai tohatoha.
25\left(x-20\right)\left(-x-16\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-25x^{2}+100x+8000=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-100±\sqrt{100^{2}-4\left(-25\right)\times 8000}}{2\left(-25\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-100±\sqrt{10000-4\left(-25\right)\times 8000}}{2\left(-25\right)}
Pūrua 100.
x=\frac{-100±\sqrt{10000+100\times 8000}}{2\left(-25\right)}
Whakareatia -4 ki te -25.
x=\frac{-100±\sqrt{10000+800000}}{2\left(-25\right)}
Whakareatia 100 ki te 8000.
x=\frac{-100±\sqrt{810000}}{2\left(-25\right)}
Tāpiri 10000 ki te 800000.
x=\frac{-100±900}{2\left(-25\right)}
Tuhia te pūtakerua o te 810000.
x=\frac{-100±900}{-50}
Whakareatia 2 ki te -25.
x=\frac{800}{-50}
Nā, me whakaoti te whārite x=\frac{-100±900}{-50} ina he tāpiri te ±. Tāpiri -100 ki te 900.
x=-16
Whakawehe 800 ki te -50.
x=-\frac{1000}{-50}
Nā, me whakaoti te whārite x=\frac{-100±900}{-50} ina he tango te ±. Tango 900 mai i -100.
x=20
Whakawehe -1000 ki te -50.
-25x^{2}+100x+8000=-25\left(x-\left(-16\right)\right)\left(x-20\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -16 mō te x_{1} me te 20 mō te x_{2}.
-25x^{2}+100x+8000=-25\left(x+16\right)\left(x-20\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}