Aromātai
\frac{367}{28}\approx 13.107142857
Tauwehe
\frac{367}{2 ^ {2} \cdot 7} = 13\frac{3}{28} = 13.107142857142858
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{28}\times 4225+3\times 65-31
Tātaihia te 65 mā te pū o 2, kia riro ko 4225.
\frac{-4225}{28}+3\times 65-31
Tuhia te -\frac{1}{28}\times 4225 hei hautanga kotahi.
-\frac{4225}{28}+3\times 65-31
Ka taea te hautanga \frac{-4225}{28} te tuhi anō ko -\frac{4225}{28} mā te tango i te tohu tōraro.
-\frac{4225}{28}+195-31
Whakareatia te 3 ki te 65, ka 195.
-\frac{4225}{28}+\frac{5460}{28}-31
Me tahuri te 195 ki te hautau \frac{5460}{28}.
\frac{-4225+5460}{28}-31
Tā te mea he rite te tauraro o -\frac{4225}{28} me \frac{5460}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1235}{28}-31
Tāpirihia te -4225 ki te 5460, ka 1235.
\frac{1235}{28}-\frac{868}{28}
Me tahuri te 31 ki te hautau \frac{868}{28}.
\frac{1235-868}{28}
Tā te mea he rite te tauraro o \frac{1235}{28} me \frac{868}{28}, me tango rāua mā te tango i ō raua taurunga.
\frac{367}{28}
Tangohia te 868 i te 1235, ka 367.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}