Whakaoti mō M_0 (complex solution)
M_{0}=\sqrt{-\left(\frac{v}{c}\right)^{2}+1}M
v\neq -c\text{ and }v\neq c\text{ and }c\neq 0
Whakaoti mō M_0
M_{0}=\frac{M\sqrt{c^{2}-v^{2}}}{|c|}
\left(v<c\text{ and }v>-c\text{ and }c\neq 0\text{ and }|v|<|c|\right)\text{ or }\left(v<-c\text{ and }v>c\text{ and }c\neq 0\text{ and }|v|<|c|\right)
Whakaoti mō M (complex solution)
M=\left(-\left(\frac{v}{c}\right)^{2}+1\right)^{-\frac{1}{2}}M_{0}
v\neq -c\text{ and }v\neq c\text{ and }c\neq 0
Whakaoti mō M
M=\frac{M_{0}|c|}{\sqrt{c^{2}-v^{2}}}
\left(|c|>|v|\text{ and }v<c\text{ and }v>-c\text{ and }c\neq 0\right)\text{ or }\left(|c|>|v|\text{ and }v<-c\text{ and }v>c\text{ and }c\neq 0\right)
Tohaina
Kua tāruatia ki te papatopenga
M=\frac{M_{0}}{\sqrt{\frac{c^{2}}{c^{2}}-\frac{v^{2}}{c^{2}}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{c^{2}}{c^{2}}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}
Tā te mea he rite te tauraro o \frac{c^{2}}{c^{2}} me \frac{v^{2}}{c^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}=M
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}=M
He hanga arowhānui tō te whārite.
\frac{\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Whakawehea ngā taha e rua ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Mā te whakawehe ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1} ka wetekia te whakareanga ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\sqrt{-\frac{v^{2}}{c^{2}}+1}M
Whakawehe M ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}}{c^{2}}-\frac{v^{2}}{c^{2}}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{c^{2}}{c^{2}}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}
Tā te mea he rite te tauraro o \frac{c^{2}}{c^{2}} me \frac{v^{2}}{c^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}=M
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}=M
He hanga arowhānui tō te whārite.
\frac{\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Whakawehea ngā taha e rua ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Mā te whakawehe ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1} ka wetekia te whakareanga ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\left(c-v\right)\left(v+c\right)}}{|c|}
Whakawehe M ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}