Tīpoka ki ngā ihirangi matua
Whakaoti mō M_0 (complex solution)
Tick mark Image
Whakaoti mō M_0
Tick mark Image
Whakaoti mō M (complex solution)
Tick mark Image
Whakaoti mō M
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

M=\frac{M_{0}}{\sqrt{\frac{c^{2}}{c^{2}}-\frac{v^{2}}{c^{2}}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{c^{2}}{c^{2}}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}
Tā te mea he rite te tauraro o \frac{c^{2}}{c^{2}} me \frac{v^{2}}{c^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}=M
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}=M
He hanga arowhānui tō te whārite.
\frac{\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Whakawehea ngā taha e rua ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Mā te whakawehe ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1} ka wetekia te whakareanga ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\sqrt{-\frac{v^{2}}{c^{2}}+1}M
Whakawehe M ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}}{c^{2}}-\frac{v^{2}}{c^{2}}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{c^{2}}{c^{2}}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}
Tā te mea he rite te tauraro o \frac{c^{2}}{c^{2}} me \frac{v^{2}}{c^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}=M
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}=M
He hanga arowhānui tō te whārite.
\frac{\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Whakawehea ngā taha e rua ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Mā te whakawehe ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1} ka wetekia te whakareanga ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\left(c-v\right)\left(v+c\right)}}{|c|}
Whakawehe M ki te \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.