Tīpoka ki ngā ihirangi matua
Whakaoti mō g
Tick mark Image
Whakaoti mō I
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

I=mg\sqrt{1+\frac{r^{2}}{h^{2}}}
Kia whakarewa i te \frac{r}{h} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
I=mg\sqrt{\frac{h^{2}}{h^{2}}+\frac{r^{2}}{h^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{h^{2}}{h^{2}}.
I=mg\sqrt{\frac{h^{2}+r^{2}}{h^{2}}}
Tā te mea he rite te tauraro o \frac{h^{2}}{h^{2}} me \frac{r^{2}}{h^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
mg\sqrt{\frac{h^{2}+r^{2}}{h^{2}}}=I
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\sqrt{\frac{r^{2}+h^{2}}{h^{2}}}mg=I
He hanga arowhānui tō te whārite.
\frac{\sqrt{\frac{r^{2}+h^{2}}{h^{2}}}mg}{\sqrt{\frac{r^{2}+h^{2}}{h^{2}}}m}=\frac{I}{\sqrt{\frac{r^{2}+h^{2}}{h^{2}}}m}
Whakawehea ngā taha e rua ki te m\sqrt{\left(h^{2}+r^{2}\right)h^{-2}}.
g=\frac{I}{\sqrt{\frac{r^{2}+h^{2}}{h^{2}}}m}
Mā te whakawehe ki te m\sqrt{\left(h^{2}+r^{2}\right)h^{-2}} ka wetekia te whakareanga ki te m\sqrt{\left(h^{2}+r^{2}\right)h^{-2}}.
g=\frac{I|h|}{m\sqrt{r^{2}+h^{2}}}
Whakawehe I ki te m\sqrt{\left(h^{2}+r^{2}\right)h^{-2}}.