Tīpoka ki ngā ihirangi matua
Whakaoti mō M (complex solution)
Tick mark Image
Whakaoti mō I
Tick mark Image
Whakaoti mō M
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

I=\left(\frac{14}{3}+\frac{2}{3}M\right)d
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te 7+M.
I=\frac{14}{3}d+\frac{2}{3}Md
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{14}{3}+\frac{2}{3}M ki te d.
\frac{14}{3}d+\frac{2}{3}Md=I
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2}{3}Md=I-\frac{14}{3}d
Tangohia te \frac{14}{3}d mai i ngā taha e rua.
\frac{2d}{3}M=-\frac{14d}{3}+I
He hanga arowhānui tō te whārite.
\frac{3\times \frac{2d}{3}M}{2d}=\frac{3\left(-\frac{14d}{3}+I\right)}{2d}
Whakawehea ngā taha e rua ki te \frac{2}{3}d.
M=\frac{3\left(-\frac{14d}{3}+I\right)}{2d}
Mā te whakawehe ki te \frac{2}{3}d ka wetekia te whakareanga ki te \frac{2}{3}d.
M=\frac{3I}{2d}-7
Whakawehe I-\frac{14d}{3} ki te \frac{2}{3}d.
I=\left(\frac{14}{3}+\frac{2}{3}M\right)d
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te 7+M.
I=\frac{14}{3}d+\frac{2}{3}Md
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{14}{3}+\frac{2}{3}M ki te d.
I=\left(\frac{14}{3}+\frac{2}{3}M\right)d
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te 7+M.
I=\frac{14}{3}d+\frac{2}{3}Md
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{14}{3}+\frac{2}{3}M ki te d.
\frac{14}{3}d+\frac{2}{3}Md=I
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2}{3}Md=I-\frac{14}{3}d
Tangohia te \frac{14}{3}d mai i ngā taha e rua.
\frac{2d}{3}M=-\frac{14d}{3}+I
He hanga arowhānui tō te whārite.
\frac{3\times \frac{2d}{3}M}{2d}=\frac{3\left(-\frac{14d}{3}+I\right)}{2d}
Whakawehea ngā taha e rua ki te \frac{2}{3}d.
M=\frac{3\left(-\frac{14d}{3}+I\right)}{2d}
Mā te whakawehe ki te \frac{2}{3}d ka wetekia te whakareanga ki te \frac{2}{3}d.
M=\frac{3I}{2d}-7
Whakawehe I-\frac{14d}{3} ki te \frac{2}{3}d.