Whakaoti mō H
H=\sqrt[30517578125]{2}+\frac{1}{4}\approx 1.25
Tautapa H
H≔\sqrt[30517578125]{2}+\frac{1}{4}
Tohaina
Kua tāruatia ki te papatopenga
H=32^{\frac{1}{152587890625}}+64^{-\frac{1}{3}}
Tātaihia te 25 mā te pū o -8, kia riro ko \frac{1}{152587890625}.
H=32^{\frac{1}{152587890625}}+\frac{1}{4}
Tātaihia te 64 mā te pū o -\frac{1}{3}, kia riro ko \frac{1}{4}.
H=\sqrt[152587890625]{32}+\frac{1}{4}
Whakaraupapatia anō ngā kīanga tau.
\sqrt[152587890625]{32}=\sqrt[152587890625]{2^{5}}=2^{\frac{5}{152587890625}}=2^{\frac{1}{30517578125}}=\sqrt[30517578125]{2}
Me tuhi anō te \sqrt[152587890625]{32} ko \sqrt[152587890625]{2^{5}}. Tahuritia i te āhua pūtake ki te āhua taupū ka whakakore i te 5 i te taupū. Tahuri anō ki te āhua pūtake.
H=\sqrt[30517578125]{2}+\frac{1}{4}
Me kōkuhu anō te uara i whiwhi i te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}