Whakaoti mō H
H=\frac{2d\left(M+7\right)}{3}
Whakaoti mō M
\left\{\begin{matrix}M=\frac{3H}{2d}-7\text{, }&d\neq 0\\M\in \mathrm{R}\text{, }&H=0\text{ and }d=0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
H=\left(\frac{14}{3}+\frac{2}{3}M\right)d
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te 7+M.
H=\frac{14}{3}d+\frac{2}{3}Md
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{14}{3}+\frac{2}{3}M ki te d.
H=\left(\frac{14}{3}+\frac{2}{3}M\right)d
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te 7+M.
H=\frac{14}{3}d+\frac{2}{3}Md
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{14}{3}+\frac{2}{3}M ki te d.
\frac{14}{3}d+\frac{2}{3}Md=H
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2}{3}Md=H-\frac{14}{3}d
Tangohia te \frac{14}{3}d mai i ngā taha e rua.
\frac{2d}{3}M=-\frac{14d}{3}+H
He hanga arowhānui tō te whārite.
\frac{3\times \frac{2d}{3}M}{2d}=\frac{3\left(-\frac{14d}{3}+H\right)}{2d}
Whakawehea ngā taha e rua ki te \frac{2}{3}d.
M=\frac{3\left(-\frac{14d}{3}+H\right)}{2d}
Mā te whakawehe ki te \frac{2}{3}d ka wetekia te whakareanga ki te \frac{2}{3}d.
M=\frac{3H}{2d}-7
Whakawehe H-\frac{14d}{3} ki te \frac{2}{3}d.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}