Aromātai
\frac{19900000000000000000000G}{459}
Kimi Pārōnaki e ai ki G
\frac{19900000000000000000000}{459} = 4.335511982570806 \times 10^{19}\frac{302}{459} = 4.335511982570806 \times 10^{19}
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
G \frac { 1.99 \times 10 ^ { 30 } } { 4.59 \times 10 ^ { 10 } }
Tohaina
Kua tāruatia ki te papatopenga
G\times \frac{1.99\times 10^{20}}{4.59}
Me whakakore tahi te 10^{10} i te taurunga me te tauraro.
G\times \frac{1.99\times 100000000000000000000}{4.59}
Tātaihia te 10 mā te pū o 20, kia riro ko 100000000000000000000.
G\times \frac{199000000000000000000}{4.59}
Whakareatia te 1.99 ki te 100000000000000000000, ka 199000000000000000000.
G\times \frac{19900000000000000000000}{459}
Whakarohaina te \frac{199000000000000000000}{4.59} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{\mathrm{d}}{\mathrm{d}G}(G\times \frac{1.99\times 10^{20}}{4.59})
Me whakakore tahi te 10^{10} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}G}(G\times \frac{1.99\times 100000000000000000000}{4.59})
Tātaihia te 10 mā te pū o 20, kia riro ko 100000000000000000000.
\frac{\mathrm{d}}{\mathrm{d}G}(G\times \frac{199000000000000000000}{4.59})
Whakareatia te 1.99 ki te 100000000000000000000, ka 199000000000000000000.
\frac{\mathrm{d}}{\mathrm{d}G}(G\times \frac{19900000000000000000000}{459})
Whakarohaina te \frac{199000000000000000000}{4.59} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{19900000000000000000000}{459}G^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{19900000000000000000000}{459}G^{0}
Tango 1 mai i 1.
\frac{19900000000000000000000}{459}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{19900000000000000000000}{459}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}