Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x^{3}+8\right)\left(x^{3}+1\right)
Kimihia he tauwehe o te āhua x^{k}+m, e wehea ai e x^{k} te huatahi me te pū nui rawa x^{6}, e wehea hoki e m te tauwehe pūmau 8. Ko tētahi tauwehe pērā ko x^{3}+8. Whakatauwehea te pūrau mā te whakawehe ki tēnei tauwehe.
\left(x+2\right)\left(x^{2}-2x+4\right)
Whakaarohia te x^{3}+8. Tuhia anō te x^{3}+8 hei x^{3}+2^{3}. Ka taea te tapeke pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x+1\right)\left(x^{2}-x+1\right)
Whakaarohia te x^{3}+1. Tuhia anō te x^{3}+1 hei x^{3}+1^{3}. Ka taea te tapeke pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{2}-x+1\right)\left(x+1\right)\left(x+2\right)\left(x^{2}-2x+4\right)
Me tuhi anō te kīanga whakatauwehe katoa. Kāore i tauwehea ēnei pūrau i te mea kāhore ō rātou pūtake whakahau: x^{2}-x+1,x^{2}-2x+4.
x^{6}+9x^{3}+8
Tāpirihia te 0 ki te 8, ka 8.