Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-4x+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2}}{2\times 2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-8}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-4\right)±\sqrt{8}}{2\times 2}
Tāpiri 16 ki te -8.
x=\frac{-\left(-4\right)±2\sqrt{2}}{2\times 2}
Tuhia te pūtakerua o te 8.
x=\frac{4±2\sqrt{2}}{2\times 2}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{2}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{2}+4}{4}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{2}}{4} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{2}.
x=\frac{\sqrt{2}}{2}+1
Whakawehe 4+2\sqrt{2} ki te 4.
x=\frac{4-2\sqrt{2}}{4}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{2}}{4} ina he tango te ±. Tango 2\sqrt{2} mai i 4.
x=-\frac{\sqrt{2}}{2}+1
Whakawehe 4-2\sqrt{2} ki te 4.
2x^{2}-4x+1=2\left(x-\left(\frac{\sqrt{2}}{2}+1\right)\right)\left(x-\left(-\frac{\sqrt{2}}{2}+1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1+\frac{\sqrt{2}}{2} mō te x_{1} me te 1-\frac{\sqrt{2}}{2} mō te x_{2}.