Aromātai
\left(x-2\right)\left(x-1\right)\left(x+4\right)^{2}x^{3}
Whakaroha
x^{7}+5x^{6}-6x^{5}-32x^{4}+32x^{3}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
F ( x ) = ( x ) ^ { 3 } ( x + 4 ) ^ { 2 } ( x - 1 ) ( x - 2 )
Tohaina
Kua tāruatia ki te papatopenga
x^{3}\left(x^{2}+8x+16\right)\left(x-1\right)\left(x-2\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+4\right)^{2}.
\left(x^{5}+8x^{4}+16x^{3}\right)\left(x-1\right)\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{3} ki te x^{2}+8x+16.
\left(x^{6}+7x^{5}+8x^{4}-16x^{3}\right)\left(x-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{5}+8x^{4}+16x^{3} ki te x-1 ka whakakotahi i ngā kupu rite.
x^{7}+5x^{6}-6x^{5}-32x^{4}+32x^{3}
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{6}+7x^{5}+8x^{4}-16x^{3} ki te x-2 ka whakakotahi i ngā kupu rite.
x^{3}\left(x^{2}+8x+16\right)\left(x-1\right)\left(x-2\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+4\right)^{2}.
\left(x^{5}+8x^{4}+16x^{3}\right)\left(x-1\right)\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{3} ki te x^{2}+8x+16.
\left(x^{6}+7x^{5}+8x^{4}-16x^{3}\right)\left(x-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{5}+8x^{4}+16x^{3} ki te x-1 ka whakakotahi i ngā kupu rite.
x^{7}+5x^{6}-6x^{5}-32x^{4}+32x^{3}
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{6}+7x^{5}+8x^{4}-16x^{3} ki te x-2 ka whakakotahi i ngā kupu rite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}