Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int t^{2}-4\mathrm{d}t
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int t^{2}\mathrm{d}t+\int -4\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{t^{3}}{3}+\int -4\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{2}\mathrm{d}t ki te \frac{t^{3}}{3}.
\frac{t^{3}}{3}-4t
Kimihia te tau tōpū o -4 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}t=at.
\frac{x^{3}}{3}-4x-\left(\frac{1^{3}}{3}-4\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{x^{3}}{3}-4x+\frac{11}{3}
Whakarūnātia.