Whakaoti mō F
\left\{\begin{matrix}F=\frac{24\left(2H+7\right)}{s}\text{, }&s\neq 0\\F\in \mathrm{R}\text{, }&H=-\frac{7}{2}\text{ and }s=0\end{matrix}\right.
Whakaoti mō H
H=\frac{Fs-168}{48}
Tohaina
Kua tāruatia ki te papatopenga
Fs=28\times 6+8\times 6H
Mahia ngā whakarea.
Fs=168+8\times 6H
Whakareatia te 28 ki te 6, ka 168.
Fs=168+48H
Whakareatia te 8 ki te 6, ka 48.
sF=48H+168
He hanga arowhānui tō te whārite.
\frac{sF}{s}=\frac{48H+168}{s}
Whakawehea ngā taha e rua ki te s.
F=\frac{48H+168}{s}
Mā te whakawehe ki te s ka wetekia te whakareanga ki te s.
F=\frac{24\left(2H+7\right)}{s}
Whakawehe 168+48H ki te s.
Fs=28\times 6+8\times 6H
Mahia ngā whakarea.
Fs=168+8\times 6H
Whakareatia te 28 ki te 6, ka 168.
Fs=168+48H
Whakareatia te 8 ki te 6, ka 48.
168+48H=Fs
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
48H=Fs-168
Tangohia te 168 mai i ngā taha e rua.
\frac{48H}{48}=\frac{Fs-168}{48}
Whakawehea ngā taha e rua ki te 48.
H=\frac{Fs-168}{48}
Mā te whakawehe ki te 48 ka wetekia te whakareanga ki te 48.
H=\frac{Fs}{48}-\frac{7}{2}
Whakawehe Fs-168 ki te 48.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}