Tīpoka ki ngā ihirangi matua
Whakaoti mō A (complex solution)
Tick mark Image
Whakaoti mō A
Tick mark Image
Whakaoti mō F (complex solution)
Tick mark Image
Whakaoti mō F
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

Ft=A\left(\left(1+t\right)^{N}-1\right)
Whakareatia ngā taha e rua o te whārite ki te t.
Ft=A\left(1+t\right)^{N}-A
Whakamahia te āhuatanga tohatoha hei whakarea te A ki te \left(1+t\right)^{N}-1.
A\left(1+t\right)^{N}-A=Ft
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(\left(1+t\right)^{N}-1\right)A=Ft
Pahekotia ngā kīanga tau katoa e whai ana i te A.
\left(\left(t+1\right)^{N}-1\right)A=Ft
He hanga arowhānui tō te whārite.
\frac{\left(\left(t+1\right)^{N}-1\right)A}{\left(t+1\right)^{N}-1}=\frac{Ft}{\left(t+1\right)^{N}-1}
Whakawehea ngā taha e rua ki te \left(1+t\right)^{N}-1.
A=\frac{Ft}{\left(t+1\right)^{N}-1}
Mā te whakawehe ki te \left(1+t\right)^{N}-1 ka wetekia te whakareanga ki te \left(1+t\right)^{N}-1.
Ft=A\left(\left(1+t\right)^{N}-1\right)
Whakareatia ngā taha e rua o te whārite ki te t.
Ft=A\left(1+t\right)^{N}-A
Whakamahia te āhuatanga tohatoha hei whakarea te A ki te \left(1+t\right)^{N}-1.
A\left(1+t\right)^{N}-A=Ft
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(\left(1+t\right)^{N}-1\right)A=Ft
Pahekotia ngā kīanga tau katoa e whai ana i te A.
\left(\left(t+1\right)^{N}-1\right)A=Ft
He hanga arowhānui tō te whārite.
\frac{\left(\left(t+1\right)^{N}-1\right)A}{\left(t+1\right)^{N}-1}=\frac{Ft}{\left(t+1\right)^{N}-1}
Whakawehea ngā taha e rua ki te \left(1+t\right)^{N}-1.
A=\frac{Ft}{\left(t+1\right)^{N}-1}
Mā te whakawehe ki te \left(1+t\right)^{N}-1 ka wetekia te whakareanga ki te \left(1+t\right)^{N}-1.