Whakaoti mō F
F=15s-775
Whakaoti mō s
s=\frac{F+775}{15}
Tohaina
Kua tāruatia ki te papatopenga
F=15s-825+50
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te s-55.
F=15s-775
Tāpirihia te -825 ki te 50, ka -775.
F=15s-825+50
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te s-55.
F=15s-775
Tāpirihia te -825 ki te 50, ka -775.
15s-775=F
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
15s=F+775
Me tāpiri te 775 ki ngā taha e rua.
\frac{15s}{15}=\frac{F+775}{15}
Whakawehea ngā taha e rua ki te 15.
s=\frac{F+775}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
s=\frac{F}{15}+\frac{155}{3}
Whakawehe F+775 ki te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}