Whakaoti mō G (complex solution)
\left\{\begin{matrix}G=\left(\frac{r}{m}\right)^{2}F\text{, }&m\neq 0\text{ and }r\neq 0\\G\in \mathrm{C}\text{, }&F=0\text{ and }m=0\text{ and }r\neq 0\end{matrix}\right.
Whakaoti mō G
\left\{\begin{matrix}G=\left(\frac{r}{m}\right)^{2}F\text{, }&m\neq 0\text{ and }r\neq 0\\G\in \mathrm{R}\text{, }&F=0\text{ and }m=0\text{ and }r\neq 0\end{matrix}\right.
Whakaoti mō F
F=\left(\frac{m}{r}\right)^{2}G
r\neq 0
Tohaina
Kua tāruatia ki te papatopenga
Fr^{2}=Gmm
Whakareatia ngā taha e rua o te whārite ki te r^{2}.
Fr^{2}=Gm^{2}
Whakareatia te m ki te m, ka m^{2}.
Gm^{2}=Fr^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
m^{2}G=Fr^{2}
He hanga arowhānui tō te whārite.
\frac{m^{2}G}{m^{2}}=\frac{Fr^{2}}{m^{2}}
Whakawehea ngā taha e rua ki te m^{2}.
G=\frac{Fr^{2}}{m^{2}}
Mā te whakawehe ki te m^{2} ka wetekia te whakareanga ki te m^{2}.
Fr^{2}=Gmm
Whakareatia ngā taha e rua o te whārite ki te r^{2}.
Fr^{2}=Gm^{2}
Whakareatia te m ki te m, ka m^{2}.
Gm^{2}=Fr^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
m^{2}G=Fr^{2}
He hanga arowhānui tō te whārite.
\frac{m^{2}G}{m^{2}}=\frac{Fr^{2}}{m^{2}}
Whakawehea ngā taha e rua ki te m^{2}.
G=\frac{Fr^{2}}{m^{2}}
Mā te whakawehe ki te m^{2} ka wetekia te whakareanga ki te m^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}