Whakaoti mō D
D=-\frac{5F}{32}
F\neq 0
Whakaoti mō F
F=-\frac{32D}{5}
D\neq 0
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{F}{0.4}}{D}=-4\times 4
Me whakarea ngā taha e rua ki te 4.
\frac{F}{0.4}=-4\times 4D
Tē taea kia ōrite te tāupe D ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te D.
\frac{F}{0.4}=-16D
Whakareatia te -4 ki te 4, ka -16.
-16D=\frac{F}{0.4}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-16D=\frac{5F}{2}
He hanga arowhānui tō te whārite.
\frac{-16D}{-16}=\frac{5F}{-16\times 2}
Whakawehea ngā taha e rua ki te -16.
D=\frac{5F}{-16\times 2}
Mā te whakawehe ki te -16 ka wetekia te whakareanga ki te -16.
D=-\frac{5F}{32}
Whakawehe \frac{5F}{2} ki te -16.
D=-\frac{5F}{32}\text{, }D\neq 0
Tē taea kia ōrite te tāupe D ki 0.
\frac{\frac{F}{0.4}}{D}=-4\times 4
Me whakarea ngā taha e rua ki te 4.
\frac{F}{0.4}=-4\times 4D
Whakareatia ngā taha e rua o te whārite ki te D.
\frac{F}{0.4}=-16D
Whakareatia te -4 ki te 4, ka -16.
\frac{5}{2}F=-16D
He hanga arowhānui tō te whārite.
\frac{\frac{5}{2}F}{\frac{5}{2}}=-\frac{16D}{\frac{5}{2}}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
F=-\frac{16D}{\frac{5}{2}}
Mā te whakawehe ki te \frac{5}{2} ka wetekia te whakareanga ki te \frac{5}{2}.
F=-\frac{32D}{5}
Whakawehe -16D ki te \frac{5}{2} mā te whakarea -16D ki te tau huripoki o \frac{5}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}