Whakaoti mō E
E = \frac{\sqrt{1737221} + 1317}{2} \approx 1317.518398833
E=\frac{1317-\sqrt{1737221}}{2}\approx -0.518398833
Tohaina
Kua tāruatia ki te papatopenga
EE+E\left(-1317\right)=683
Tē taea kia ōrite te tāupe E ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te E.
E^{2}+E\left(-1317\right)=683
Whakareatia te E ki te E, ka E^{2}.
E^{2}+E\left(-1317\right)-683=0
Tangohia te 683 mai i ngā taha e rua.
E^{2}-1317E-683=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
E=\frac{-\left(-1317\right)±\sqrt{\left(-1317\right)^{2}-4\left(-683\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -1317 mō b, me -683 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
E=\frac{-\left(-1317\right)±\sqrt{1734489-4\left(-683\right)}}{2}
Pūrua -1317.
E=\frac{-\left(-1317\right)±\sqrt{1734489+2732}}{2}
Whakareatia -4 ki te -683.
E=\frac{-\left(-1317\right)±\sqrt{1737221}}{2}
Tāpiri 1734489 ki te 2732.
E=\frac{1317±\sqrt{1737221}}{2}
Ko te tauaro o -1317 ko 1317.
E=\frac{\sqrt{1737221}+1317}{2}
Nā, me whakaoti te whārite E=\frac{1317±\sqrt{1737221}}{2} ina he tāpiri te ±. Tāpiri 1317 ki te \sqrt{1737221}.
E=\frac{1317-\sqrt{1737221}}{2}
Nā, me whakaoti te whārite E=\frac{1317±\sqrt{1737221}}{2} ina he tango te ±. Tango \sqrt{1737221} mai i 1317.
E=\frac{\sqrt{1737221}+1317}{2} E=\frac{1317-\sqrt{1737221}}{2}
Kua oti te whārite te whakatau.
EE+E\left(-1317\right)=683
Tē taea kia ōrite te tāupe E ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te E.
E^{2}+E\left(-1317\right)=683
Whakareatia te E ki te E, ka E^{2}.
E^{2}-1317E=683
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
E^{2}-1317E+\left(-\frac{1317}{2}\right)^{2}=683+\left(-\frac{1317}{2}\right)^{2}
Whakawehea te -1317, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1317}{2}. Nā, tāpiria te pūrua o te -\frac{1317}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
E^{2}-1317E+\frac{1734489}{4}=683+\frac{1734489}{4}
Pūruatia -\frac{1317}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
E^{2}-1317E+\frac{1734489}{4}=\frac{1737221}{4}
Tāpiri 683 ki te \frac{1734489}{4}.
\left(E-\frac{1317}{2}\right)^{2}=\frac{1737221}{4}
Tauwehea E^{2}-1317E+\frac{1734489}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(E-\frac{1317}{2}\right)^{2}}=\sqrt{\frac{1737221}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
E-\frac{1317}{2}=\frac{\sqrt{1737221}}{2} E-\frac{1317}{2}=-\frac{\sqrt{1737221}}{2}
Whakarūnātia.
E=\frac{\sqrt{1737221}+1317}{2} E=\frac{1317-\sqrt{1737221}}{2}
Me tāpiri \frac{1317}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}