Whakaoti mō E
E = \frac{\sqrt{1761809} + 1317}{20} \approx 132.216576678
E=\frac{1317-\sqrt{1761809}}{20}\approx -0.516576678
Tohaina
Kua tāruatia ki te papatopenga
EE+E\left(-131.7\right)=68.3
Tē taea kia ōrite te tāupe E ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te E.
E^{2}+E\left(-131.7\right)=68.3
Whakareatia te E ki te E, ka E^{2}.
E^{2}+E\left(-131.7\right)-68.3=0
Tangohia te 68.3 mai i ngā taha e rua.
E^{2}-131.7E-68.3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
E=\frac{-\left(-131.7\right)±\sqrt{\left(-131.7\right)^{2}-4\left(-68.3\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -131.7 mō b, me -68.3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
E=\frac{-\left(-131.7\right)±\sqrt{17344.89-4\left(-68.3\right)}}{2}
Pūruatia -131.7 mā te pūrua i te taurunga me te tauraro o te hautanga.
E=\frac{-\left(-131.7\right)±\sqrt{17344.89+273.2}}{2}
Whakareatia -4 ki te -68.3.
E=\frac{-\left(-131.7\right)±\sqrt{17618.09}}{2}
Tāpiri 17344.89 ki te 273.2 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
E=\frac{-\left(-131.7\right)±\frac{\sqrt{1761809}}{10}}{2}
Tuhia te pūtakerua o te 17618.09.
E=\frac{131.7±\frac{\sqrt{1761809}}{10}}{2}
Ko te tauaro o -131.7 ko 131.7.
E=\frac{\sqrt{1761809}+1317}{2\times 10}
Nā, me whakaoti te whārite E=\frac{131.7±\frac{\sqrt{1761809}}{10}}{2} ina he tāpiri te ±. Tāpiri 131.7 ki te \frac{\sqrt{1761809}}{10}.
E=\frac{\sqrt{1761809}+1317}{20}
Whakawehe \frac{1317+\sqrt{1761809}}{10} ki te 2.
E=\frac{1317-\sqrt{1761809}}{2\times 10}
Nā, me whakaoti te whārite E=\frac{131.7±\frac{\sqrt{1761809}}{10}}{2} ina he tango te ±. Tango \frac{\sqrt{1761809}}{10} mai i 131.7.
E=\frac{1317-\sqrt{1761809}}{20}
Whakawehe \frac{1317-\sqrt{1761809}}{10} ki te 2.
E=\frac{\sqrt{1761809}+1317}{20} E=\frac{1317-\sqrt{1761809}}{20}
Kua oti te whārite te whakatau.
EE+E\left(-131.7\right)=68.3
Tē taea kia ōrite te tāupe E ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te E.
E^{2}+E\left(-131.7\right)=68.3
Whakareatia te E ki te E, ka E^{2}.
E^{2}-131.7E=68.3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
E^{2}-131.7E+\left(-65.85\right)^{2}=68.3+\left(-65.85\right)^{2}
Whakawehea te -131.7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -65.85. Nā, tāpiria te pūrua o te -65.85 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
E^{2}-131.7E+4336.2225=68.3+4336.2225
Pūruatia -65.85 mā te pūrua i te taurunga me te tauraro o te hautanga.
E^{2}-131.7E+4336.2225=4404.5225
Tāpiri 68.3 ki te 4336.2225 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(E-65.85\right)^{2}=4404.5225
Tauwehea E^{2}-131.7E+4336.2225. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(E-65.85\right)^{2}}=\sqrt{4404.5225}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
E-65.85=\frac{\sqrt{1761809}}{20} E-65.85=-\frac{\sqrt{1761809}}{20}
Whakarūnātia.
E=\frac{\sqrt{1761809}+1317}{20} E=\frac{1317-\sqrt{1761809}}{20}
Me tāpiri 65.85 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}