Whakaoti mō E
E=5
Tautapa E
E≔5
Tohaina
Kua tāruatia ki te papatopenga
E=\frac{42875\times 3^{7}}{45^{2}\times 21^{3}}
Tātaihia te 35 mā te pū o 3, kia riro ko 42875.
E=\frac{42875\times 2187}{45^{2}\times 21^{3}}
Tātaihia te 3 mā te pū o 7, kia riro ko 2187.
E=\frac{93767625}{45^{2}\times 21^{3}}
Whakareatia te 42875 ki te 2187, ka 93767625.
E=\frac{93767625}{2025\times 21^{3}}
Tātaihia te 45 mā te pū o 2, kia riro ko 2025.
E=\frac{93767625}{2025\times 9261}
Tātaihia te 21 mā te pū o 3, kia riro ko 9261.
E=\frac{93767625}{18753525}
Whakareatia te 2025 ki te 9261, ka 18753525.
E=5
Whakawehea te 93767625 ki te 18753525, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}