Tīpoka ki ngā ihirangi matua
Whakaoti mō E
Tick mark Image
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

E=\frac{\left(n+1\right)\left(n^{2}-n+1\right)}{\left(n^{2}-n+1\right)^{2}}-\frac{n^{2}+2n-1-2n^{3}}{n^{3}+1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{1+n^{3}}{n^{4}-2n^{3}+3n^{2}-2n+1}.
E=\frac{n+1}{n^{2}-n+1}-\frac{n^{2}+2n-1-2n^{3}}{n^{3}+1}
Me whakakore tahi te n^{2}-n+1 i te taurunga me te tauraro.
E=\frac{n+1}{n^{2}-n+1}-\frac{\left(n-1\right)\left(n+1\right)\left(-2n+1\right)}{\left(n+1\right)\left(n^{2}-n+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{n^{2}+2n-1-2n^{3}}{n^{3}+1}.
E=\frac{n+1}{n^{2}-n+1}-\frac{\left(n-1\right)\left(-2n+1\right)}{n^{2}-n+1}
Me whakakore tahi te n+1 i te taurunga me te tauraro.
E=\frac{n+1-\left(n-1\right)\left(-2n+1\right)}{n^{2}-n+1}
Tā te mea he rite te tauraro o \frac{n+1}{n^{2}-n+1} me \frac{\left(n-1\right)\left(-2n+1\right)}{n^{2}-n+1}, me tango rāua mā te tango i ō raua taurunga.
E=\frac{n+1+2n^{2}-n-2n+1}{n^{2}-n+1}
Mahia ngā whakarea i roto o n+1-\left(n-1\right)\left(-2n+1\right).
E=\frac{-2n+2+2n^{2}}{n^{2}-n+1}
Whakakotahitia ngā kupu rite i n+1+2n^{2}-n-2n+1.
E=\frac{2\left(n^{2}-n+1\right)}{n^{2}-n+1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-2n+2+2n^{2}}{n^{2}-n+1}.
E=2
Me whakakore tahi te n^{2}-n+1 i te taurunga me te tauraro.