Whakaoti mō E
E=2
n\neq -1
Whakaoti mō n
n\neq -1
E=2\text{ and }n\neq -1
Tohaina
Kua tāruatia ki te papatopenga
E=\frac{\left(n+1\right)\left(n^{2}-n+1\right)}{\left(n^{2}-n+1\right)^{2}}-\frac{n^{2}+2n-1-2n^{3}}{n^{3}+1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{1+n^{3}}{n^{4}-2n^{3}+3n^{2}-2n+1}.
E=\frac{n+1}{n^{2}-n+1}-\frac{n^{2}+2n-1-2n^{3}}{n^{3}+1}
Me whakakore tahi te n^{2}-n+1 i te taurunga me te tauraro.
E=\frac{n+1}{n^{2}-n+1}-\frac{\left(n-1\right)\left(n+1\right)\left(-2n+1\right)}{\left(n+1\right)\left(n^{2}-n+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{n^{2}+2n-1-2n^{3}}{n^{3}+1}.
E=\frac{n+1}{n^{2}-n+1}-\frac{\left(n-1\right)\left(-2n+1\right)}{n^{2}-n+1}
Me whakakore tahi te n+1 i te taurunga me te tauraro.
E=\frac{n+1-\left(n-1\right)\left(-2n+1\right)}{n^{2}-n+1}
Tā te mea he rite te tauraro o \frac{n+1}{n^{2}-n+1} me \frac{\left(n-1\right)\left(-2n+1\right)}{n^{2}-n+1}, me tango rāua mā te tango i ō raua taurunga.
E=\frac{n+1+2n^{2}-n-2n+1}{n^{2}-n+1}
Mahia ngā whakarea i roto o n+1-\left(n-1\right)\left(-2n+1\right).
E=\frac{-2n+2+2n^{2}}{n^{2}-n+1}
Whakakotahitia ngā kupu rite i n+1+2n^{2}-n-2n+1.
E=\frac{2\left(n^{2}-n+1\right)}{n^{2}-n+1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-2n+2+2n^{2}}{n^{2}-n+1}.
E=2
Me whakakore tahi te n^{2}-n+1 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}