Whakaoti mō E
E = \frac{18}{7} = 2\frac{4}{7} \approx 2.571428571
Tautapa E
E≔\frac{18}{7}
Tohaina
Kua tāruatia ki te papatopenga
E=\frac{-\frac{3}{2}}{\frac{8}{12}-\frac{5}{4}}
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
E=\frac{-\frac{3}{2}}{\frac{2}{3}-\frac{5}{4}}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
E=\frac{-\frac{3}{2}}{\frac{8}{12}-\frac{15}{12}}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{2}{3} me \frac{5}{4} ki te hautau me te tautūnga 12.
E=\frac{-\frac{3}{2}}{\frac{8-15}{12}}
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{15}{12}, me tango rāua mā te tango i ō raua taurunga.
E=\frac{-\frac{3}{2}}{-\frac{7}{12}}
Tangohia te 15 i te 8, ka -7.
E=-\frac{3}{2}\left(-\frac{12}{7}\right)
Whakawehe -\frac{3}{2} ki te -\frac{7}{12} mā te whakarea -\frac{3}{2} ki te tau huripoki o -\frac{7}{12}.
E=\frac{-3\left(-12\right)}{2\times 7}
Me whakarea te -\frac{3}{2} ki te -\frac{12}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
E=\frac{36}{14}
Mahia ngā whakarea i roto i te hautanga \frac{-3\left(-12\right)}{2\times 7}.
E=\frac{18}{7}
Whakahekea te hautanga \frac{36}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}