Tīpoka ki ngā ihirangi matua
Whakaoti mō E
Tick mark Image
Tautapa E
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

E=\frac{-\frac{3}{2}}{\frac{8}{12}-\frac{5}{4}}
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
E=\frac{-\frac{3}{2}}{\frac{2}{3}-\frac{5}{4}}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
E=\frac{-\frac{3}{2}}{\frac{8}{12}-\frac{15}{12}}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{2}{3} me \frac{5}{4} ki te hautau me te tautūnga 12.
E=\frac{-\frac{3}{2}}{\frac{8-15}{12}}
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{15}{12}, me tango rāua mā te tango i ō raua taurunga.
E=\frac{-\frac{3}{2}}{-\frac{7}{12}}
Tangohia te 15 i te 8, ka -7.
E=-\frac{3}{2}\left(-\frac{12}{7}\right)
Whakawehe -\frac{3}{2} ki te -\frac{7}{12} mā te whakarea -\frac{3}{2} ki te tau huripoki o -\frac{7}{12}.
E=\frac{-3\left(-12\right)}{2\times 7}
Me whakarea te -\frac{3}{2} ki te -\frac{12}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
E=\frac{36}{14}
Mahia ngā whakarea i roto i te hautanga \frac{-3\left(-12\right)}{2\times 7}.
E=\frac{18}{7}
Whakahekea te hautanga \frac{36}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.