Whakaoti mō D
D=0
Tohaina
Kua tāruatia ki te papatopenga
D^{2}-D+4D=D\left(D-8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te D ki te D-1.
D^{2}+3D=D\left(D-8\right)
Pahekotia te -D me 4D, ka 3D.
D^{2}+3D=D^{2}-8D
Whakamahia te āhuatanga tohatoha hei whakarea te D ki te D-8.
D^{2}+3D-D^{2}=-8D
Tangohia te D^{2} mai i ngā taha e rua.
3D=-8D
Pahekotia te D^{2} me -D^{2}, ka 0.
3D+8D=0
Me tāpiri te 8D ki ngā taha e rua.
11D=0
Pahekotia te 3D me 8D, ka 11D.
D=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te 11 e ōrite ki 0, me ōrite pū te D ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}