Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki D
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

D^{\frac{2}{5}}\frac{\mathrm{d}}{\mathrm{d}D}(\sqrt[5]{D})+\sqrt[5]{D}\frac{\mathrm{d}}{\mathrm{d}D}(D^{\frac{2}{5}})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
D^{\frac{2}{5}}\times \frac{1}{5}D^{\frac{1}{5}-1}+\sqrt[5]{D}\times \frac{2}{5}D^{\frac{2}{5}-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
D^{\frac{2}{5}}\times \frac{1}{5}D^{-\frac{4}{5}}+\sqrt[5]{D}\times \frac{2}{5}D^{-\frac{3}{5}}
Whakarūnātia.
\frac{1}{5}D^{\frac{2-4}{5}}+\frac{2}{5}D^{\frac{1-3}{5}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{1}{5}D^{-\frac{2}{5}}+\frac{2}{5}D^{-\frac{2}{5}}
Whakarūnātia.
D^{\frac{3}{5}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{2}{5} me te \frac{1}{5} kia riro ai te \frac{3}{5}.