Whakaoti mō D
D=37+10x-x^{2}
Whakaoti mō x (complex solution)
x=-\sqrt{62-D}+5
x=\sqrt{62-D}+5
Whakaoti mō x
x=-\sqrt{62-D}+5
x=\sqrt{62-D}+5\text{, }D\leq 62
Graph
Tohaina
Kua tāruatia ki te papatopenga
D=5x+1-\left(x^{2}-5x-36\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+4 ki te x-9 ka whakakotahi i ngā kupu rite.
D=5x+1-x^{2}+5x+36
Hei kimi i te tauaro o x^{2}-5x-36, kimihia te tauaro o ia taurangi.
D=10x+1-x^{2}+36
Pahekotia te 5x me 5x, ka 10x.
D=10x+37-x^{2}
Tāpirihia te 1 ki te 36, ka 37.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}