Tīpoka ki ngā ihirangi matua
Whakaoti mō C
Tick mark Image
Whakaoti mō O
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

CO=\sqrt{1444-1440^{2}}
Tātaihia te 38 mā te pū o 2, kia riro ko 1444.
CO=\sqrt{1444-2073600}
Tātaihia te 1440 mā te pū o 2, kia riro ko 2073600.
CO=\sqrt{-2072156}
Tangohia te 2073600 i te 1444, ka -2072156.
CO=2i\sqrt{518039}
Tauwehea te -2072156=\left(2i\right)^{2}\times 518039. Tuhia anō te pūtake rua o te hua \sqrt{\left(2i\right)^{2}\times 518039} hei hua o ngā pūtake rua \sqrt{\left(2i\right)^{2}}\sqrt{518039}. Tuhia te pūtakerua o te \left(2i\right)^{2}.
CO=2\sqrt{518039}i
Whakaraupapatia anō ngā kīanga tau.
OC=2\sqrt{518039}i
He hanga arowhānui tō te whārite.
\frac{OC}{O}=\frac{2\sqrt{518039}i}{O}
Whakawehea ngā taha e rua ki te O.
C=\frac{2\sqrt{518039}i}{O}
Mā te whakawehe ki te O ka wetekia te whakareanga ki te O.
CO=\sqrt{1444-1440^{2}}
Tātaihia te 38 mā te pū o 2, kia riro ko 1444.
CO=\sqrt{1444-2073600}
Tātaihia te 1440 mā te pū o 2, kia riro ko 2073600.
CO=\sqrt{-2072156}
Tangohia te 2073600 i te 1444, ka -2072156.
CO=2i\sqrt{518039}
Tauwehea te -2072156=\left(2i\right)^{2}\times 518039. Tuhia anō te pūtake rua o te hua \sqrt{\left(2i\right)^{2}\times 518039} hei hua o ngā pūtake rua \sqrt{\left(2i\right)^{2}}\sqrt{518039}. Tuhia te pūtakerua o te \left(2i\right)^{2}.
CO=2\sqrt{518039}i
Whakaraupapatia anō ngā kīanga tau.
\frac{CO}{C}=\frac{2\sqrt{518039}i}{C}
Whakawehea ngā taha e rua ki te C.
O=\frac{2\sqrt{518039}i}{C}
Mā te whakawehe ki te C ka wetekia te whakareanga ki te C.