C ( n . 1 ) + C ( n . 2 ) = 28
Whakaoti mō C
C=\frac{280}{3n}
n\neq 0
Whakaoti mō n
n=\frac{280}{3C}
C\neq 0
Tohaina
Kua tāruatia ki te papatopenga
0.3Cn=28
Pahekotia te Cn\times 0.1 me Cn\times 0.2, ka 0.3Cn.
\frac{3n}{10}C=28
He hanga arowhānui tō te whārite.
\frac{10\times \frac{3n}{10}C}{3n}=\frac{10\times 28}{3n}
Whakawehea ngā taha e rua ki te 0.3n.
C=\frac{10\times 28}{3n}
Mā te whakawehe ki te 0.3n ka wetekia te whakareanga ki te 0.3n.
C=\frac{280}{3n}
Whakawehe 28 ki te 0.3n.
0.3Cn=28
Pahekotia te Cn\times 0.1 me Cn\times 0.2, ka 0.3Cn.
\frac{3C}{10}n=28
He hanga arowhānui tō te whārite.
\frac{10\times \frac{3C}{10}n}{3C}=\frac{10\times 28}{3C}
Whakawehea ngā taha e rua ki te 0.3C.
n=\frac{10\times 28}{3C}
Mā te whakawehe ki te 0.3C ka wetekia te whakareanga ki te 0.3C.
n=\frac{280}{3C}
Whakawehe 28 ki te 0.3C.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}