Whakaoti mō b
\left\{\begin{matrix}b=\frac{Cm}{m+1}\text{, }&m\neq -1\text{ and }m\neq 0\\b\in \mathrm{R}\text{, }&m=-1\text{ and }C=0\end{matrix}\right.
Whakaoti mō C
C=b+\frac{b}{m}
m\neq 0
Tohaina
Kua tāruatia ki te papatopenga
Cm=b\left(1+\frac{1}{m}\right)m
Whakareatia ngā taha e rua o te whārite ki te m.
Cm=b\left(\frac{m}{m}+\frac{1}{m}\right)m
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{m}{m}.
Cm=b\times \frac{m+1}{m}m
Tā te mea he rite te tauraro o \frac{m}{m} me \frac{1}{m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
Cm=\frac{b\left(m+1\right)}{m}m
Tuhia te b\times \frac{m+1}{m} hei hautanga kotahi.
Cm=\frac{b\left(m+1\right)m}{m}
Tuhia te \frac{b\left(m+1\right)}{m}m hei hautanga kotahi.
Cm=b\left(m+1\right)
Me whakakore tahi te m i te taurunga me te tauraro.
Cm=bm+b
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te m+1.
bm+b=Cm
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(m+1\right)b=Cm
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\frac{\left(m+1\right)b}{m+1}=\frac{Cm}{m+1}
Whakawehea ngā taha e rua ki te m+1.
b=\frac{Cm}{m+1}
Mā te whakawehe ki te m+1 ka wetekia te whakareanga ki te m+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}