B ( 6 ) - A ( 6 ) = 5000 ( 1 + \frac { 46 \% } { 4 } ) ^ { 24 } - 5000 ( 1 + 4.5 \% ) ^ { 6 }
Whakaoti mō A
A=B-10275.7573661003795573605550886065096894916352618741902033984661102294921875
Whakaoti mō B
B=A+10275.7573661003795573605550886065096894916352618741902033984661102294921875
Tohaina
Kua tāruatia ki te papatopenga
B\times 6-A\times 6=5000\left(1+\frac{\frac{23}{50}}{4}\right)^{24}-5000\left(1+\frac{4.5}{100}\right)^{6}
Whakahekea te hautanga \frac{46}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
B\times 6-A\times 6=5000\left(1+\frac{23}{50\times 4}\right)^{24}-5000\left(1+\frac{4.5}{100}\right)^{6}
Tuhia te \frac{\frac{23}{50}}{4} hei hautanga kotahi.
B\times 6-A\times 6=5000\left(1+\frac{23}{200}\right)^{24}-5000\left(1+\frac{4.5}{100}\right)^{6}
Whakareatia te 50 ki te 4, ka 200.
B\times 6-A\times 6=5000\times \left(\frac{223}{200}\right)^{24}-5000\left(1+\frac{4.5}{100}\right)^{6}
Tāpirihia te 1 ki te \frac{23}{200}, ka \frac{223}{200}.
B\times 6-A\times 6=5000\times \frac{228726620476342311322986907121740662480032913978015824641}{16777216000000000000000000000000000000000000000000000000}-5000\left(1+\frac{4.5}{100}\right)^{6}
Tātaihia te \frac{223}{200} mā te pū o 24, kia riro ko \frac{228726620476342311322986907121740662480032913978015824641}{16777216000000000000000000000000000000000000000000000000}.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-5000\left(1+\frac{4.5}{100}\right)^{6}
Whakareatia te 5000 ki te \frac{228726620476342311322986907121740662480032913978015824641}{16777216000000000000000000000000000000000000000000000000}, ka \frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-5000\left(1+\frac{45}{1000}\right)^{6}
Whakarohaina te \frac{4.5}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-5000\left(1+\frac{9}{200}\right)^{6}
Whakahekea te hautanga \frac{45}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-5000\times \left(\frac{209}{200}\right)^{6}
Tāpirihia te 1 ki te \frac{9}{200}, ka \frac{209}{200}.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-5000\times \frac{83344647990241}{64000000000000}
Tātaihia te \frac{209}{200} mā te pū o 6, kia riro ko \frac{83344647990241}{64000000000000}.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-\frac{83344647990241}{12800000000}
Whakareatia te 5000 ki te \frac{83344647990241}{64000000000000}, ka \frac{83344647990241}{12800000000}.
B\times 6-A\times 6=\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}
Tangohia te \frac{83344647990241}{12800000000} i te \frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}, ka \frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}.
B\times 6-6A=\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}
Whakareatia te -1 ki te 6, ka -6.
-6A=\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-B\times 6
Tangohia te B\times 6 mai i ngā taha e rua.
-6A=\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-6B
He hanga arowhānui tō te whārite.
\frac{-6A}{-6}=\frac{\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-6B}{-6}
Whakawehea ngā taha e rua ki te -6.
A=\frac{\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-6B}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
A=B-\frac{68959440357862858206328969040580220826677637992671941547}{6710886400000000000000000000000000000000000000000000}
Whakawehe \frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-6B ki te -6.
B\times 6-A\times 6=5000\left(1+\frac{\frac{23}{50}}{4}\right)^{24}-5000\left(1+\frac{4.5}{100}\right)^{6}
Whakahekea te hautanga \frac{46}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
B\times 6-A\times 6=5000\left(1+\frac{23}{50\times 4}\right)^{24}-5000\left(1+\frac{4.5}{100}\right)^{6}
Tuhia te \frac{\frac{23}{50}}{4} hei hautanga kotahi.
B\times 6-A\times 6=5000\left(1+\frac{23}{200}\right)^{24}-5000\left(1+\frac{4.5}{100}\right)^{6}
Whakareatia te 50 ki te 4, ka 200.
B\times 6-A\times 6=5000\times \left(\frac{223}{200}\right)^{24}-5000\left(1+\frac{4.5}{100}\right)^{6}
Tāpirihia te 1 ki te \frac{23}{200}, ka \frac{223}{200}.
B\times 6-A\times 6=5000\times \frac{228726620476342311322986907121740662480032913978015824641}{16777216000000000000000000000000000000000000000000000000}-5000\left(1+\frac{4.5}{100}\right)^{6}
Tātaihia te \frac{223}{200} mā te pū o 24, kia riro ko \frac{228726620476342311322986907121740662480032913978015824641}{16777216000000000000000000000000000000000000000000000000}.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-5000\left(1+\frac{4.5}{100}\right)^{6}
Whakareatia te 5000 ki te \frac{228726620476342311322986907121740662480032913978015824641}{16777216000000000000000000000000000000000000000000000000}, ka \frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-5000\left(1+\frac{45}{1000}\right)^{6}
Whakarohaina te \frac{4.5}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-5000\left(1+\frac{9}{200}\right)^{6}
Whakahekea te hautanga \frac{45}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-5000\times \left(\frac{209}{200}\right)^{6}
Tāpirihia te 1 ki te \frac{9}{200}, ka \frac{209}{200}.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-5000\times \frac{83344647990241}{64000000000000}
Tātaihia te \frac{209}{200} mā te pū o 6, kia riro ko \frac{83344647990241}{64000000000000}.
B\times 6-A\times 6=\frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}-\frac{83344647990241}{12800000000}
Whakareatia te 5000 ki te \frac{83344647990241}{64000000000000}, ka \frac{83344647990241}{12800000000}.
B\times 6-A\times 6=\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}
Tangohia te \frac{83344647990241}{12800000000} i te \frac{228726620476342311322986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}, ka \frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}.
B\times 6=\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}+A\times 6
Me tāpiri te A\times 6 ki ngā taha e rua.
6B=6A+\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}
He hanga arowhānui tō te whārite.
\frac{6B}{6}=\frac{6A+\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}}{6}
Whakawehea ngā taha e rua ki te 6.
B=\frac{6A+\frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
B=A+\frac{68959440357862858206328969040580220826677637992671941547}{6710886400000000000000000000000000000000000000000000}
Whakawehe \frac{206878321073588574618986907121740662480032913978015824641}{3355443200000000000000000000000000000000000000000000}+6A ki te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}