Tīpoka ki ngā ihirangi matua
Whakaoti mō B
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

B^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
\left(B-1\right)\left(B+1\right)=0
Whakaarohia te B^{2}-1. Tuhia anō te B^{2}-1 hei B^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
B=1 B=-1
Hei kimi otinga whārite, me whakaoti te B-1=0 me te B+1=0.
B=1 B=-1
Tuhia te pūtakerua o ngā taha e rua o te whārite.
B^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
B=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
B=\frac{0±\sqrt{-4\left(-1\right)}}{2}
Pūrua 0.
B=\frac{0±\sqrt{4}}{2}
Whakareatia -4 ki te -1.
B=\frac{0±2}{2}
Tuhia te pūtakerua o te 4.
B=1
Nā, me whakaoti te whārite B=\frac{0±2}{2} ina he tāpiri te ±. Whakawehe 2 ki te 2.
B=-1
Nā, me whakaoti te whārite B=\frac{0±2}{2} ina he tango te ±. Whakawehe -2 ki te 2.
B=1 B=-1
Kua oti te whārite te whakatau.