Whakaoti mō B
B=\frac{5\sqrt{2}+4-2\sqrt{14}-5\sqrt{7}}{17}\approx -0.567117854
Tautapa B
B≔\frac{5\sqrt{2}+4-2\sqrt{14}-5\sqrt{7}}{17}
Tohaina
Kua tāruatia ki te papatopenga
B=\frac{\sqrt{2}-\sqrt{7}}{5-2\sqrt{2}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{\left(5-2\sqrt{2}\right)\left(5+2\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{2}-\sqrt{7}}{5-2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 5+2\sqrt{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{5^{2}-\left(-2\sqrt{2}\right)^{2}}
Whakaarohia te \left(5-2\sqrt{2}\right)\left(5+2\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-\left(-2\sqrt{2}\right)^{2}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Whakarohaina te \left(-2\sqrt{2}\right)^{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-4\left(\sqrt{2}\right)^{2}}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-4\times 2}
Ko te pūrua o \sqrt{2} ko 2.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-8}
Whakareatia te 4 ki te 2, ka 8.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{17}
Tangohia te 8 i te 25, ka 17.
B=\frac{5\sqrt{2}+2\left(\sqrt{2}\right)^{2}-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{2}-\sqrt{7} ki ia tau o 5+2\sqrt{2}.
B=\frac{5\sqrt{2}+2\times 2-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
Ko te pūrua o \sqrt{2} ko 2.
B=\frac{5\sqrt{2}+4-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
Whakareatia te 2 ki te 2, ka 4.
B=\frac{5\sqrt{2}+4-5\sqrt{7}-2\sqrt{14}}{17}
Hei whakarea \sqrt{7} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
B=\frac{5}{17}\sqrt{2}+\frac{4}{17}-\frac{5}{17}\sqrt{7}-\frac{2}{17}\sqrt{14}
Whakawehea ia wā o 5\sqrt{2}+4-5\sqrt{7}-2\sqrt{14} ki te 17, kia riro ko \frac{5}{17}\sqrt{2}+\frac{4}{17}-\frac{5}{17}\sqrt{7}-\frac{2}{17}\sqrt{14}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}