Tīpoka ki ngā ihirangi matua
Whakaoti mō A
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

A^{2}+2A=65
Whakareatia te A ki te A, ka A^{2}.
A^{2}+2A-65=0
Tangohia te 65 mai i ngā taha e rua.
A=\frac{-2±\sqrt{2^{2}-4\left(-65\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -65 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
A=\frac{-2±\sqrt{4-4\left(-65\right)}}{2}
Pūrua 2.
A=\frac{-2±\sqrt{4+260}}{2}
Whakareatia -4 ki te -65.
A=\frac{-2±\sqrt{264}}{2}
Tāpiri 4 ki te 260.
A=\frac{-2±2\sqrt{66}}{2}
Tuhia te pūtakerua o te 264.
A=\frac{2\sqrt{66}-2}{2}
Nā, me whakaoti te whārite A=\frac{-2±2\sqrt{66}}{2} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{66}.
A=\sqrt{66}-1
Whakawehe -2+2\sqrt{66} ki te 2.
A=\frac{-2\sqrt{66}-2}{2}
Nā, me whakaoti te whārite A=\frac{-2±2\sqrt{66}}{2} ina he tango te ±. Tango 2\sqrt{66} mai i -2.
A=-\sqrt{66}-1
Whakawehe -2-2\sqrt{66} ki te 2.
A=\sqrt{66}-1 A=-\sqrt{66}-1
Kua oti te whārite te whakatau.
A^{2}+2A=65
Whakareatia te A ki te A, ka A^{2}.
A^{2}+2A+1^{2}=65+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
A^{2}+2A+1=65+1
Pūrua 1.
A^{2}+2A+1=66
Tāpiri 65 ki te 1.
\left(A+1\right)^{2}=66
Tauwehea A^{2}+2A+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(A+1\right)^{2}}=\sqrt{66}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
A+1=\sqrt{66} A+1=-\sqrt{66}
Whakarūnātia.
A=\sqrt{66}-1 A=-\sqrt{66}-1
Me tango 1 mai i ngā taha e rua o te whārite.