Whakaoti mō A
A = \frac{\sqrt{58}}{2} \approx 3.807886553
A = -\frac{\sqrt{58}}{2} \approx -3.807886553
Tohaina
Kua tāruatia ki te papatopenga
A^{2}=\frac{87}{6}
Whakawehea ngā taha e rua ki te 6.
A^{2}=\frac{29}{2}
Whakahekea te hautanga \frac{87}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
A=\frac{\sqrt{58}}{2} A=-\frac{\sqrt{58}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
A^{2}=\frac{87}{6}
Whakawehea ngā taha e rua ki te 6.
A^{2}=\frac{29}{2}
Whakahekea te hautanga \frac{87}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
A^{2}-\frac{29}{2}=0
Tangohia te \frac{29}{2} mai i ngā taha e rua.
A=\frac{0±\sqrt{0^{2}-4\left(-\frac{29}{2}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{29}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
A=\frac{0±\sqrt{-4\left(-\frac{29}{2}\right)}}{2}
Pūrua 0.
A=\frac{0±\sqrt{58}}{2}
Whakareatia -4 ki te -\frac{29}{2}.
A=\frac{\sqrt{58}}{2}
Nā, me whakaoti te whārite A=\frac{0±\sqrt{58}}{2} ina he tāpiri te ±.
A=-\frac{\sqrt{58}}{2}
Nā, me whakaoti te whārite A=\frac{0±\sqrt{58}}{2} ina he tango te ±.
A=\frac{\sqrt{58}}{2} A=-\frac{\sqrt{58}}{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}