Tīpoka ki ngā ihirangi matua
Whakaoti mō A
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

A^{2}=\frac{87}{6}
Whakawehea ngā taha e rua ki te 6.
A^{2}=\frac{29}{2}
Whakahekea te hautanga \frac{87}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
A=\frac{\sqrt{58}}{2} A=-\frac{\sqrt{58}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
A^{2}=\frac{87}{6}
Whakawehea ngā taha e rua ki te 6.
A^{2}=\frac{29}{2}
Whakahekea te hautanga \frac{87}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
A^{2}-\frac{29}{2}=0
Tangohia te \frac{29}{2} mai i ngā taha e rua.
A=\frac{0±\sqrt{0^{2}-4\left(-\frac{29}{2}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{29}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
A=\frac{0±\sqrt{-4\left(-\frac{29}{2}\right)}}{2}
Pūrua 0.
A=\frac{0±\sqrt{58}}{2}
Whakareatia -4 ki te -\frac{29}{2}.
A=\frac{\sqrt{58}}{2}
Nā, me whakaoti te whārite A=\frac{0±\sqrt{58}}{2} ina he tāpiri te ±.
A=-\frac{\sqrt{58}}{2}
Nā, me whakaoti te whārite A=\frac{0±\sqrt{58}}{2} ina he tango te ±.
A=\frac{\sqrt{58}}{2} A=-\frac{\sqrt{58}}{2}
Kua oti te whārite te whakatau.