Tīpoka ki ngā ihirangi matua
Whakaoti mō A
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

A^{2}+324=60^{2}
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
A^{2}+324=3600
Tātaihia te 60 mā te pū o 2, kia riro ko 3600.
A^{2}=3600-324
Tangohia te 324 mai i ngā taha e rua.
A^{2}=3276
Tangohia te 324 i te 3600, ka 3276.
A=6\sqrt{91} A=-6\sqrt{91}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
A^{2}+324=60^{2}
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
A^{2}+324=3600
Tātaihia te 60 mā te pū o 2, kia riro ko 3600.
A^{2}+324-3600=0
Tangohia te 3600 mai i ngā taha e rua.
A^{2}-3276=0
Tangohia te 3600 i te 324, ka -3276.
A=\frac{0±\sqrt{0^{2}-4\left(-3276\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -3276 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
A=\frac{0±\sqrt{-4\left(-3276\right)}}{2}
Pūrua 0.
A=\frac{0±\sqrt{13104}}{2}
Whakareatia -4 ki te -3276.
A=\frac{0±12\sqrt{91}}{2}
Tuhia te pūtakerua o te 13104.
A=6\sqrt{91}
Nā, me whakaoti te whārite A=\frac{0±12\sqrt{91}}{2} ina he tāpiri te ±.
A=-6\sqrt{91}
Nā, me whakaoti te whārite A=\frac{0±12\sqrt{91}}{2} ina he tango te ±.
A=6\sqrt{91} A=-6\sqrt{91}
Kua oti te whārite te whakatau.