Whakaoti mō A
A=xL^{2}
Whakaoti mō L (complex solution)
\left\{\begin{matrix}L=-x^{-\frac{1}{2}}\sqrt{A}\text{; }L=x^{-\frac{1}{2}}\sqrt{A}\text{, }&x\neq 0\\L\in \mathrm{C}\text{, }&A=0\text{ and }x=0\end{matrix}\right.
Whakaoti mō L
\left\{\begin{matrix}L=\sqrt{\frac{A}{x}}\text{; }L=-\sqrt{\frac{A}{x}}\text{, }&\left(A\geq 0\text{ and }x>0\right)\text{ or }\left(A\leq 0\text{ and }x<0\right)\\L\in \mathrm{R}\text{, }&A=0\text{ and }x=0\end{matrix}\right.
Graph
Pātaitai
Algebra
A = L x L
Tohaina
Kua tāruatia ki te papatopenga
A=L^{2}x
Whakareatia te L ki te L, ka L^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}