Whakaoti mō A
A = \frac{8201201}{40601} = 201\frac{40400}{40601} \approx 201.995049383
Tautapa A
A≔\frac{8201201}{40601}
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
A = 202 - \frac { 1 } { 202 - \frac { 1 } { 202 - 1 } }
Tohaina
Kua tāruatia ki te papatopenga
A=202-\frac{1}{202-\frac{1}{201}}
Tangohia te 1 i te 202, ka 201.
A=202-\frac{1}{\frac{40602}{201}-\frac{1}{201}}
Me tahuri te 202 ki te hautau \frac{40602}{201}.
A=202-\frac{1}{\frac{40602-1}{201}}
Tā te mea he rite te tauraro o \frac{40602}{201} me \frac{1}{201}, me tango rāua mā te tango i ō raua taurunga.
A=202-\frac{1}{\frac{40601}{201}}
Tangohia te 1 i te 40602, ka 40601.
A=202-1\times \frac{201}{40601}
Whakawehe 1 ki te \frac{40601}{201} mā te whakarea 1 ki te tau huripoki o \frac{40601}{201}.
A=202-\frac{201}{40601}
Whakareatia te 1 ki te \frac{201}{40601}, ka \frac{201}{40601}.
A=\frac{8201402}{40601}-\frac{201}{40601}
Me tahuri te 202 ki te hautau \frac{8201402}{40601}.
A=\frac{8201402-201}{40601}
Tā te mea he rite te tauraro o \frac{8201402}{40601} me \frac{201}{40601}, me tango rāua mā te tango i ō raua taurunga.
A=\frac{8201201}{40601}
Tangohia te 201 i te 8201402, ka 8201201.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}