Whakaoti mō A
A = \frac{17}{14} = 1\frac{3}{14} \approx 1.214285714
Tautapa A
A≔\frac{17}{14}
Tohaina
Kua tāruatia ki te papatopenga
A=\frac{3}{7}+\frac{1}{7}\left(\frac{10}{2}+\frac{1}{2}\right)
Me tahuri te 5 ki te hautau \frac{10}{2}.
A=\frac{3}{7}+\frac{1}{7}\times \frac{10+1}{2}
Tā te mea he rite te tauraro o \frac{10}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
A=\frac{3}{7}+\frac{1}{7}\times \frac{11}{2}
Tāpirihia te 10 ki te 1, ka 11.
A=\frac{3}{7}+\frac{1\times 11}{7\times 2}
Me whakarea te \frac{1}{7} ki te \frac{11}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
A=\frac{3}{7}+\frac{11}{14}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 11}{7\times 2}.
A=\frac{6}{14}+\frac{11}{14}
Ko te maha noa iti rawa atu o 7 me 14 ko 14. Me tahuri \frac{3}{7} me \frac{11}{14} ki te hautau me te tautūnga 14.
A=\frac{6+11}{14}
Tā te mea he rite te tauraro o \frac{6}{14} me \frac{11}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
A=\frac{17}{14}
Tāpirihia te 6 ki te 11, ka 17.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}