Aromātai
18x
Kimi Pārōnaki e ai ki x
18
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x-1+1+9x-1+3x+1-9x-1+3x+1
Pahekotia te 9x me 3x, ka 12x.
12x+9x-1+3x+1-9x-1+3x+1
Tāpirihia te -1 ki te 1, ka 0.
15x+9x-1+1-9x-1+3x+1
Pahekotia te 12x me 3x, ka 15x.
15x+9x-9x-1+3x+1
Tāpirihia te -1 ki te 1, ka 0.
18x+9x-9x-1+1
Pahekotia te 15x me 3x, ka 18x.
18x+9x-9x
Tāpirihia te -1 ki te 1, ka 0.
27x-9x
Pahekotia te 18x me 9x, ka 27x.
18x
Pahekotia te 27x me -9x, ka 18x.
\frac{\mathrm{d}}{\mathrm{d}x}(12x-1+1+9x-1+3x+1-9x-1+3x+1)
Pahekotia te 9x me 3x, ka 12x.
\frac{\mathrm{d}}{\mathrm{d}x}(12x+9x-1+3x+1-9x-1+3x+1)
Tāpirihia te -1 ki te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(15x+9x-1+1-9x-1+3x+1)
Pahekotia te 12x me 3x, ka 15x.
\frac{\mathrm{d}}{\mathrm{d}x}(15x+9x-9x-1+3x+1)
Tāpirihia te -1 ki te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(18x+9x-9x-1+1)
Pahekotia te 15x me 3x, ka 18x.
\frac{\mathrm{d}}{\mathrm{d}x}(18x+9x-9x)
Tāpirihia te -1 ki te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(27x-9x)
Pahekotia te 18x me 9x, ka 27x.
\frac{\mathrm{d}}{\mathrm{d}x}(18x)
Pahekotia te 27x me -9x, ka 18x.
18x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
18x^{0}
Tango 1 mai i 1.
18\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
18
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}