Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x+40+4\left(-\frac{8}{3}\right)x=35
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 10-\frac{8}{3}x.
9x+40+\frac{4\left(-8\right)}{3}x=35
Tuhia te 4\left(-\frac{8}{3}\right) hei hautanga kotahi.
9x+40+\frac{-32}{3}x=35
Whakareatia te 4 ki te -8, ka -32.
9x+40-\frac{32}{3}x=35
Ka taea te hautanga \frac{-32}{3} te tuhi anō ko -\frac{32}{3} mā te tango i te tohu tōraro.
-\frac{5}{3}x+40=35
Pahekotia te 9x me -\frac{32}{3}x, ka -\frac{5}{3}x.
-\frac{5}{3}x=35-40
Tangohia te 40 mai i ngā taha e rua.
-\frac{5}{3}x=-5
Tangohia te 40 i te 35, ka -5.
x=-5\left(-\frac{3}{5}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{5}, te tau utu o -\frac{5}{3}.
x=3
Whakareatia -5 ki te -\frac{3}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}