Whakaoti mō x
x=\frac{\sqrt{29}+5}{18}\approx 0.5769536
x=\frac{5-\sqrt{29}}{18}\approx -0.021398045
Graph
Pātaitai
Algebra
9x+2= \sqrt{ 81x+5 }
Tohaina
Kua tāruatia ki te papatopenga
\left(9x+2\right)^{2}=\left(\sqrt{81x+5}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
81x^{2}+36x+4=\left(\sqrt{81x+5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(9x+2\right)^{2}.
81x^{2}+36x+4=81x+5
Tātaihia te \sqrt{81x+5} mā te pū o 2, kia riro ko 81x+5.
81x^{2}+36x+4-81x=5
Tangohia te 81x mai i ngā taha e rua.
81x^{2}-45x+4=5
Pahekotia te 36x me -81x, ka -45x.
81x^{2}-45x+4-5=0
Tangohia te 5 mai i ngā taha e rua.
81x^{2}-45x-1=0
Tangohia te 5 i te 4, ka -1.
x=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}-4\times 81\left(-1\right)}}{2\times 81}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 81 mō a, -45 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-45\right)±\sqrt{2025-4\times 81\left(-1\right)}}{2\times 81}
Pūrua -45.
x=\frac{-\left(-45\right)±\sqrt{2025-324\left(-1\right)}}{2\times 81}
Whakareatia -4 ki te 81.
x=\frac{-\left(-45\right)±\sqrt{2025+324}}{2\times 81}
Whakareatia -324 ki te -1.
x=\frac{-\left(-45\right)±\sqrt{2349}}{2\times 81}
Tāpiri 2025 ki te 324.
x=\frac{-\left(-45\right)±9\sqrt{29}}{2\times 81}
Tuhia te pūtakerua o te 2349.
x=\frac{45±9\sqrt{29}}{2\times 81}
Ko te tauaro o -45 ko 45.
x=\frac{45±9\sqrt{29}}{162}
Whakareatia 2 ki te 81.
x=\frac{9\sqrt{29}+45}{162}
Nā, me whakaoti te whārite x=\frac{45±9\sqrt{29}}{162} ina he tāpiri te ±. Tāpiri 45 ki te 9\sqrt{29}.
x=\frac{\sqrt{29}+5}{18}
Whakawehe 45+9\sqrt{29} ki te 162.
x=\frac{45-9\sqrt{29}}{162}
Nā, me whakaoti te whārite x=\frac{45±9\sqrt{29}}{162} ina he tango te ±. Tango 9\sqrt{29} mai i 45.
x=\frac{5-\sqrt{29}}{18}
Whakawehe 45-9\sqrt{29} ki te 162.
x=\frac{\sqrt{29}+5}{18} x=\frac{5-\sqrt{29}}{18}
Kua oti te whārite te whakatau.
9\times \frac{\sqrt{29}+5}{18}+2=\sqrt{81\times \frac{\sqrt{29}+5}{18}+5}
Whakakapia te \frac{\sqrt{29}+5}{18} mō te x i te whārite 9x+2=\sqrt{81x+5}.
\frac{1}{2}\times 29^{\frac{1}{2}}+\frac{9}{2}=\frac{9}{2}+\frac{1}{2}\times 29^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{\sqrt{29}+5}{18} kua ngata te whārite.
9\times \frac{5-\sqrt{29}}{18}+2=\sqrt{81\times \frac{5-\sqrt{29}}{18}+5}
Whakakapia te \frac{5-\sqrt{29}}{18} mō te x i te whārite 9x+2=\sqrt{81x+5}.
\frac{9}{2}-\frac{1}{2}\times 29^{\frac{1}{2}}=\frac{9}{2}-\frac{1}{2}\times 29^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{5-\sqrt{29}}{18} kua ngata te whārite.
x=\frac{\sqrt{29}+5}{18} x=\frac{5-\sqrt{29}}{18}
Rārangihia ngā rongoā katoa o 9x+2=\sqrt{81x+5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}