Whakaoti mō x
x=\frac{\sqrt{835}-10}{49}\approx 0.385640134
x=\frac{-\sqrt{835}-10}{49}\approx -0.793803399
Graph
Tohaina
Kua tāruatia ki te papatopenga
98x^{2}+40x-30=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-40±\sqrt{40^{2}-4\times 98\left(-30\right)}}{2\times 98}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 98 mō a, 40 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\times 98\left(-30\right)}}{2\times 98}
Pūrua 40.
x=\frac{-40±\sqrt{1600-392\left(-30\right)}}{2\times 98}
Whakareatia -4 ki te 98.
x=\frac{-40±\sqrt{1600+11760}}{2\times 98}
Whakareatia -392 ki te -30.
x=\frac{-40±\sqrt{13360}}{2\times 98}
Tāpiri 1600 ki te 11760.
x=\frac{-40±4\sqrt{835}}{2\times 98}
Tuhia te pūtakerua o te 13360.
x=\frac{-40±4\sqrt{835}}{196}
Whakareatia 2 ki te 98.
x=\frac{4\sqrt{835}-40}{196}
Nā, me whakaoti te whārite x=\frac{-40±4\sqrt{835}}{196} ina he tāpiri te ±. Tāpiri -40 ki te 4\sqrt{835}.
x=\frac{\sqrt{835}-10}{49}
Whakawehe -40+4\sqrt{835} ki te 196.
x=\frac{-4\sqrt{835}-40}{196}
Nā, me whakaoti te whārite x=\frac{-40±4\sqrt{835}}{196} ina he tango te ±. Tango 4\sqrt{835} mai i -40.
x=\frac{-\sqrt{835}-10}{49}
Whakawehe -40-4\sqrt{835} ki te 196.
x=\frac{\sqrt{835}-10}{49} x=\frac{-\sqrt{835}-10}{49}
Kua oti te whārite te whakatau.
98x^{2}+40x-30=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
98x^{2}+40x-30-\left(-30\right)=-\left(-30\right)
Me tāpiri 30 ki ngā taha e rua o te whārite.
98x^{2}+40x=-\left(-30\right)
Mā te tango i te -30 i a ia ake anō ka toe ko te 0.
98x^{2}+40x=30
Tango -30 mai i 0.
\frac{98x^{2}+40x}{98}=\frac{30}{98}
Whakawehea ngā taha e rua ki te 98.
x^{2}+\frac{40}{98}x=\frac{30}{98}
Mā te whakawehe ki te 98 ka wetekia te whakareanga ki te 98.
x^{2}+\frac{20}{49}x=\frac{30}{98}
Whakahekea te hautanga \frac{40}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{20}{49}x=\frac{15}{49}
Whakahekea te hautanga \frac{30}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{20}{49}x+\left(\frac{10}{49}\right)^{2}=\frac{15}{49}+\left(\frac{10}{49}\right)^{2}
Whakawehea te \frac{20}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{10}{49}. Nā, tāpiria te pūrua o te \frac{10}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{15}{49}+\frac{100}{2401}
Pūruatia \frac{10}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{835}{2401}
Tāpiri \frac{15}{49} ki te \frac{100}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{10}{49}\right)^{2}=\frac{835}{2401}
Tauwehea x^{2}+\frac{20}{49}x+\frac{100}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{49}\right)^{2}}=\sqrt{\frac{835}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{10}{49}=\frac{\sqrt{835}}{49} x+\frac{10}{49}=-\frac{\sqrt{835}}{49}
Whakarūnātia.
x=\frac{\sqrt{835}-10}{49} x=\frac{-\sqrt{835}-10}{49}
Me tango \frac{10}{49} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}