Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

b^{2}=\frac{2}{98}
Whakawehea ngā taha e rua ki te 98.
b^{2}=\frac{1}{49}
Whakahekea te hautanga \frac{2}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
b^{2}-\frac{1}{49}=0
Tangohia te \frac{1}{49} mai i ngā taha e rua.
49b^{2}-1=0
Me whakarea ngā taha e rua ki te 49.
\left(7b-1\right)\left(7b+1\right)=0
Whakaarohia te 49b^{2}-1. Tuhia anō te 49b^{2}-1 hei \left(7b\right)^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=\frac{1}{7} b=-\frac{1}{7}
Hei kimi otinga whārite, me whakaoti te 7b-1=0 me te 7b+1=0.
b^{2}=\frac{2}{98}
Whakawehea ngā taha e rua ki te 98.
b^{2}=\frac{1}{49}
Whakahekea te hautanga \frac{2}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
b=\frac{1}{7} b=-\frac{1}{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b^{2}=\frac{2}{98}
Whakawehea ngā taha e rua ki te 98.
b^{2}=\frac{1}{49}
Whakahekea te hautanga \frac{2}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
b^{2}-\frac{1}{49}=0
Tangohia te \frac{1}{49} mai i ngā taha e rua.
b=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{49}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{1}{49} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-\frac{1}{49}\right)}}{2}
Pūrua 0.
b=\frac{0±\sqrt{\frac{4}{49}}}{2}
Whakareatia -4 ki te -\frac{1}{49}.
b=\frac{0±\frac{2}{7}}{2}
Tuhia te pūtakerua o te \frac{4}{49}.
b=\frac{1}{7}
Nā, me whakaoti te whārite b=\frac{0±\frac{2}{7}}{2} ina he tāpiri te ±.
b=-\frac{1}{7}
Nā, me whakaoti te whārite b=\frac{0±\frac{2}{7}}{2} ina he tango te ±.
b=\frac{1}{7} b=-\frac{1}{7}
Kua oti te whārite te whakatau.