Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=y+96p-\frac{y}{p}\text{, }&p\neq 0\\x\in \mathrm{C}\text{, }&p=0\text{ and }y=0\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=y+96p-\frac{y}{p}\text{, }&p\neq 0\\x\in \mathrm{R}\text{, }&p=0\text{ and }y=0\end{matrix}\right.
Whakaoti mō p (complex solution)
p=\frac{\sqrt{x^{2}-2xy+y^{2}+384y}+x-y}{192}
p=\frac{-\sqrt{x^{2}-2xy+y^{2}+384y}+x-y}{192}
Whakaoti mō p
p=\frac{\sqrt{x^{2}-2xy+y^{2}+384y}+x-y}{192}
p=\frac{-\sqrt{x^{2}-2xy+y^{2}+384y}+x-y}{192}\text{, }y\geq x+\frac{\sqrt{147456-1536x}}{2}-192\text{ or }y\leq x-\frac{\sqrt{147456-1536x}}{2}-192\text{ or }x\geq 96
Graph
Tohaina
Kua tāruatia ki te papatopenga
96p^{2}+yp-xp-y=0xp
Whakamahia te āhuatanga tohatoha hei whakarea te y-x ki te p.
96p^{2}+yp-xp-y=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
yp-xp-y=-96p^{2}
Tangohia te 96p^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-xp-y=-96p^{2}-yp
Tangohia te yp mai i ngā taha e rua.
-xp=-96p^{2}-yp+y
Me tāpiri te y ki ngā taha e rua.
\left(-p\right)x=-py+y-96p^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-p\right)x}{-p}=\frac{-py+y-96p^{2}}{-p}
Whakawehea ngā taha e rua ki te -p.
x=\frac{-py+y-96p^{2}}{-p}
Mā te whakawehe ki te -p ka wetekia te whakareanga ki te -p.
x=y+96p-\frac{y}{p}
Whakawehe -96p^{2}-yp+y ki te -p.
96p^{2}+yp-xp-y=0xp
Whakamahia te āhuatanga tohatoha hei whakarea te y-x ki te p.
96p^{2}+yp-xp-y=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
yp-xp-y=-96p^{2}
Tangohia te 96p^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-xp-y=-96p^{2}-yp
Tangohia te yp mai i ngā taha e rua.
-xp=-96p^{2}-yp+y
Me tāpiri te y ki ngā taha e rua.
\left(-p\right)x=-py+y-96p^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-p\right)x}{-p}=\frac{-py+y-96p^{2}}{-p}
Whakawehea ngā taha e rua ki te -p.
x=\frac{-py+y-96p^{2}}{-p}
Mā te whakawehe ki te -p ka wetekia te whakareanga ki te -p.
x=y+96p-\frac{y}{p}
Whakawehe -96p^{2}-yp+y ki te -p.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}