Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

96-6z^{2}=0
Pahekotia te -2z^{2} me -4z^{2}, ka -6z^{2}.
-6z^{2}=-96
Tangohia te 96 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
z^{2}=\frac{-96}{-6}
Whakawehea ngā taha e rua ki te -6.
z^{2}=16
Whakawehea te -96 ki te -6, kia riro ko 16.
z=4 z=-4
Tuhia te pūtakerua o ngā taha e rua o te whārite.
96-6z^{2}=0
Pahekotia te -2z^{2} me -4z^{2}, ka -6z^{2}.
-6z^{2}+96=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\left(-6\right)\times 96}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, 0 mō b, me 96 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-6\right)\times 96}}{2\left(-6\right)}
Pūrua 0.
z=\frac{0±\sqrt{24\times 96}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
z=\frac{0±\sqrt{2304}}{2\left(-6\right)}
Whakareatia 24 ki te 96.
z=\frac{0±48}{2\left(-6\right)}
Tuhia te pūtakerua o te 2304.
z=\frac{0±48}{-12}
Whakareatia 2 ki te -6.
z=-4
Nā, me whakaoti te whārite z=\frac{0±48}{-12} ina he tāpiri te ±. Whakawehe 48 ki te -12.
z=4
Nā, me whakaoti te whārite z=\frac{0±48}{-12} ina he tango te ±. Whakawehe -48 ki te -12.
z=-4 z=4
Kua oti te whārite te whakatau.