Whakaoti mō v
v = \frac{2 \sqrt{193578}}{33} \approx 26.665151472
v = -\frac{2 \sqrt{193578}}{33} \approx -26.665151472
Tohaina
Kua tāruatia ki te papatopenga
5376+18088=33v^{2}
Whakareatia ngā taha e rua o te whārite ki te 56.
23464=33v^{2}
Tāpirihia te 5376 ki te 18088, ka 23464.
33v^{2}=23464
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
v^{2}=\frac{23464}{33}
Whakawehea ngā taha e rua ki te 33.
v=\frac{2\sqrt{193578}}{33} v=-\frac{2\sqrt{193578}}{33}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5376+18088=33v^{2}
Whakareatia ngā taha e rua o te whārite ki te 56.
23464=33v^{2}
Tāpirihia te 5376 ki te 18088, ka 23464.
33v^{2}=23464
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
33v^{2}-23464=0
Tangohia te 23464 mai i ngā taha e rua.
v=\frac{0±\sqrt{0^{2}-4\times 33\left(-23464\right)}}{2\times 33}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 33 mō a, 0 mō b, me -23464 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\times 33\left(-23464\right)}}{2\times 33}
Pūrua 0.
v=\frac{0±\sqrt{-132\left(-23464\right)}}{2\times 33}
Whakareatia -4 ki te 33.
v=\frac{0±\sqrt{3097248}}{2\times 33}
Whakareatia -132 ki te -23464.
v=\frac{0±4\sqrt{193578}}{2\times 33}
Tuhia te pūtakerua o te 3097248.
v=\frac{0±4\sqrt{193578}}{66}
Whakareatia 2 ki te 33.
v=\frac{2\sqrt{193578}}{33}
Nā, me whakaoti te whārite v=\frac{0±4\sqrt{193578}}{66} ina he tāpiri te ±.
v=-\frac{2\sqrt{193578}}{33}
Nā, me whakaoti te whārite v=\frac{0±4\sqrt{193578}}{66} ina he tango te ±.
v=\frac{2\sqrt{193578}}{33} v=-\frac{2\sqrt{193578}}{33}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}