Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10x\left(x+10\right)\times 94+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10x\left(x+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,10,x+10.
\left(10x^{2}+100x\right)\times 94+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Whakamahia te āhuatanga tohatoha hei whakarea te 10x ki te x+10.
940x^{2}+9400x+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Whakamahia te āhuatanga tohatoha hei whakarea te 10x^{2}+100x ki te 94.
940x^{2}+9400x+2400x+24000=x\left(x+10\right)\times 120+10x\times 120
Whakamahia te āhuatanga tohatoha hei whakarea te 10x+100 ki te 240.
940x^{2}+11800x+24000=x\left(x+10\right)\times 120+10x\times 120
Pahekotia te 9400x me 2400x, ka 11800x.
940x^{2}+11800x+24000=\left(x^{2}+10x\right)\times 120+10x\times 120
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+10.
940x^{2}+11800x+24000=120x^{2}+1200x+10x\times 120
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+10x ki te 120.
940x^{2}+11800x+24000=120x^{2}+1200x+1200x
Whakareatia te 10 ki te 120, ka 1200.
940x^{2}+11800x+24000=120x^{2}+2400x
Pahekotia te 1200x me 1200x, ka 2400x.
940x^{2}+11800x+24000-120x^{2}=2400x
Tangohia te 120x^{2} mai i ngā taha e rua.
820x^{2}+11800x+24000=2400x
Pahekotia te 940x^{2} me -120x^{2}, ka 820x^{2}.
820x^{2}+11800x+24000-2400x=0
Tangohia te 2400x mai i ngā taha e rua.
820x^{2}+9400x+24000=0
Pahekotia te 11800x me -2400x, ka 9400x.
x=\frac{-9400±\sqrt{9400^{2}-4\times 820\times 24000}}{2\times 820}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 820 mō a, 9400 mō b, me 24000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9400±\sqrt{88360000-4\times 820\times 24000}}{2\times 820}
Pūrua 9400.
x=\frac{-9400±\sqrt{88360000-3280\times 24000}}{2\times 820}
Whakareatia -4 ki te 820.
x=\frac{-9400±\sqrt{88360000-78720000}}{2\times 820}
Whakareatia -3280 ki te 24000.
x=\frac{-9400±\sqrt{9640000}}{2\times 820}
Tāpiri 88360000 ki te -78720000.
x=\frac{-9400±200\sqrt{241}}{2\times 820}
Tuhia te pūtakerua o te 9640000.
x=\frac{-9400±200\sqrt{241}}{1640}
Whakareatia 2 ki te 820.
x=\frac{200\sqrt{241}-9400}{1640}
Nā, me whakaoti te whārite x=\frac{-9400±200\sqrt{241}}{1640} ina he tāpiri te ±. Tāpiri -9400 ki te 200\sqrt{241}.
x=\frac{5\sqrt{241}-235}{41}
Whakawehe -9400+200\sqrt{241} ki te 1640.
x=\frac{-200\sqrt{241}-9400}{1640}
Nā, me whakaoti te whārite x=\frac{-9400±200\sqrt{241}}{1640} ina he tango te ±. Tango 200\sqrt{241} mai i -9400.
x=\frac{-5\sqrt{241}-235}{41}
Whakawehe -9400-200\sqrt{241} ki te 1640.
x=\frac{5\sqrt{241}-235}{41} x=\frac{-5\sqrt{241}-235}{41}
Kua oti te whārite te whakatau.
10x\left(x+10\right)\times 94+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10x\left(x+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,10,x+10.
\left(10x^{2}+100x\right)\times 94+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Whakamahia te āhuatanga tohatoha hei whakarea te 10x ki te x+10.
940x^{2}+9400x+\left(10x+100\right)\times 240=x\left(x+10\right)\times 120+10x\times 120
Whakamahia te āhuatanga tohatoha hei whakarea te 10x^{2}+100x ki te 94.
940x^{2}+9400x+2400x+24000=x\left(x+10\right)\times 120+10x\times 120
Whakamahia te āhuatanga tohatoha hei whakarea te 10x+100 ki te 240.
940x^{2}+11800x+24000=x\left(x+10\right)\times 120+10x\times 120
Pahekotia te 9400x me 2400x, ka 11800x.
940x^{2}+11800x+24000=\left(x^{2}+10x\right)\times 120+10x\times 120
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+10.
940x^{2}+11800x+24000=120x^{2}+1200x+10x\times 120
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+10x ki te 120.
940x^{2}+11800x+24000=120x^{2}+1200x+1200x
Whakareatia te 10 ki te 120, ka 1200.
940x^{2}+11800x+24000=120x^{2}+2400x
Pahekotia te 1200x me 1200x, ka 2400x.
940x^{2}+11800x+24000-120x^{2}=2400x
Tangohia te 120x^{2} mai i ngā taha e rua.
820x^{2}+11800x+24000=2400x
Pahekotia te 940x^{2} me -120x^{2}, ka 820x^{2}.
820x^{2}+11800x+24000-2400x=0
Tangohia te 2400x mai i ngā taha e rua.
820x^{2}+9400x+24000=0
Pahekotia te 11800x me -2400x, ka 9400x.
820x^{2}+9400x=-24000
Tangohia te 24000 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{820x^{2}+9400x}{820}=-\frac{24000}{820}
Whakawehea ngā taha e rua ki te 820.
x^{2}+\frac{9400}{820}x=-\frac{24000}{820}
Mā te whakawehe ki te 820 ka wetekia te whakareanga ki te 820.
x^{2}+\frac{470}{41}x=-\frac{24000}{820}
Whakahekea te hautanga \frac{9400}{820} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
x^{2}+\frac{470}{41}x=-\frac{1200}{41}
Whakahekea te hautanga \frac{-24000}{820} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
x^{2}+\frac{470}{41}x+\left(\frac{235}{41}\right)^{2}=-\frac{1200}{41}+\left(\frac{235}{41}\right)^{2}
Whakawehea te \frac{470}{41}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{235}{41}. Nā, tāpiria te pūrua o te \frac{235}{41} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{470}{41}x+\frac{55225}{1681}=-\frac{1200}{41}+\frac{55225}{1681}
Pūruatia \frac{235}{41} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{470}{41}x+\frac{55225}{1681}=\frac{6025}{1681}
Tāpiri -\frac{1200}{41} ki te \frac{55225}{1681} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{235}{41}\right)^{2}=\frac{6025}{1681}
Tauwehea x^{2}+\frac{470}{41}x+\frac{55225}{1681}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{235}{41}\right)^{2}}=\sqrt{\frac{6025}{1681}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{235}{41}=\frac{5\sqrt{241}}{41} x+\frac{235}{41}=-\frac{5\sqrt{241}}{41}
Whakarūnātia.
x=\frac{5\sqrt{241}-235}{41} x=\frac{-5\sqrt{241}-235}{41}
Me tango \frac{235}{41} mai i ngā taha e rua o te whārite.